A word is a sequence of elements of $(G - \{e\}) \cup (H - \{e\})$; it is reduced if no two adjacent elements are in G or in H.

We will denote a word with commas:

$$w = a_1, a_2, \ldots, a_n.$$

If a and b are both in G or both in H, let $\overline{a, b}$ denote ab if $ab \neq e$ and the empty word otherwise. By an *immediate descendent* of w we mean a word obtained by replacing a subword a, b by $\overline{a, b}$. By a descendent of w we mean either w itself or a word which can be reached from w by a chain of immediate descendents.

Proposition If x and y are reduced descendents of w then x = y.

Assuming the proposition, we define ww' (for reduced words w and w') to be the reduced descendent of the word w, w'. This is obviously associative, since (ww')w'' and w(w'w'') are reduced descendents of the word w, w', w''.

The proof of the proposition is by induction on the length of w. Let the chain from w to x (resp., y) begin with x_1 (resp., y_1), and let x_1 (resp., y_1) be obtained from w by replacing a, b by $\overline{a, b}$ (resp., c, d by $\overline{c, d}$).

First we observe that if x_1 and y_1 have a common descendent z then we are done, because if u is the reduced descendent of z then u and x are reduced descendents of x_1 , so they are equal by the inductive hypothesis, and similarly u = y, so x = y.

If a, b and c, d are the same subword then $x_1 = y_1$.

If a, b and c, d don't overlap, we obtain a common descendent z by replacing c, d in x_1 by $\overline{c, d}$.

If a, b and c, d overlap but are not the same subword, we may assume that a is to the left of c in w, and then b = c and the triple a, b, d is in G or in H. There are four cases. If $ab \neq e$ and $bd \neq e$ then the word z obtained from x_1 by replacing ab, d by $\overline{ab, d}$ is a common descendent of x_1 and y_1 . If ab = e and $bd \neq e$ then x_1 is an immediate descendent of y_1 . If $ab \neq e$ and bd = e then y_1 is an immediate descendent of x_1 . Finally, if ab = e and bd = e then $x_1 = y_1$. This completes the proof.