A word is a sequence of elements of $(G-\{e\}) \cup(H-\{e\})$; it is reduced if no two adjacent elements are in G or in H.

We will denote a word with commas:

$$
w=a_{1}, a_{2}, \ldots, a_{n}
$$

If a and b are both in G or both in H, let $\overline{a, b}$ denote $a b$ if $a b \neq e$ and the empty word otherwise. By an immediate descendent of w we mean a word obtained by replacing a subword a, b by $\overline{a, b}$. By a descendent of w we mean either w itself or a word which can be reached from w by a chain of immediate descendents.

Proposition If x and y are reduced descendents of w then $x=y$.
Assuming the proposition, we define $w w^{\prime}$ (for reduced words w and w^{\prime}) to be the reduced descendent of the word w, w^{\prime}. This is obviously associative, since $\left(w w^{\prime}\right) w^{\prime \prime}$ and $w\left(w^{\prime} w^{\prime \prime}\right)$ are reduced descendents of the word $w, w^{\prime}, w^{\prime \prime}$.

The proof of the proposition is by induction on the length of w. Let the chain from w to x (resp., y) begin with x_{1} (resp., y_{1}), and let x_{1} (resp., y_{1}) be obtained from w by replacing a, b by $\overline{a, b}$ (resp., c, d by $\overline{c, d}$).

First we observe that if x_{1} and y_{1} have a common descendent z then we are done, because if u is the reduced descendent of z then u and x are reduced descendents of x_{1}, so they are equal by the inductive hypothesis, and similarly $u=y$, so $x=y$.

If a, b and c, d are the same subword then $x_{1}=y_{1}$.
If a, b and c, d don't overlap, we obtain a common descendent z by replacing c, d in x_{1} by $\overline{c, d}$.

If a, b and c, d overlap but are not the same subword, we may assume that a is to the left of c in w, and then $b=c$ and the triple a, b, d is in G or in H. There are four cases. If $a b \neq e$ and $b d \neq e$ then the word z obtained from x_{1} by replacing $a b, d$ by $\overline{a b, d}$ is a common descendent of x_{1} and y_{1}. If $a b=e$ and $b d \neq e$ then x_{1} is an immediate descendent of y_{1}. If $a b \neq e$ and $b d=e$ then y_{1} is an immediate descendent of x_{1}. Finally, if $a b=e$ and $b d=e$ then $x_{1}=y_{1}$. This completes the proof.

