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The First Part





CHAPTER 1

The First Chapter

1. Universal property

Definition 1. Let S be a set. A free group on S is a group FS with a set map

i : S ! FS

such that, whenever G is a group and

� : S ! G

is a set map, there exists a unique group homomorphism

~� : FS ! G

such that ~� � i extends �:

Consider the following diagram,

S ,! FS
�& # ~�

G

This says that there is a correspondence between group homomorphisms

FS ! G;

and set maps
S ! G:

I.e.

Groups

" #
Sets

Which is a left adjoint to the forgetful functor:

Hom (F (S)! G) ! Hom

0@S ! G|{z}
free group

1A :

As usual with objects de�ned via a universal property, it�s immediate that if FS
exists then it�s unique up to isomorphism. If we were to take the categorical point
of view we could guarantee the existence of free groups by appealing to an adjoint
functor theorem.

Example 1. If S = ?; then FS �= 1:

Example 2. If S = fsg ; then FS �= Z

3
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2. Algebraic de�nition, and construction of a free group with basis S

The above was via the universal property, but now construct free groups on
large sets in a di¤erent way.

Let S be an arbitrary set. We de�ne the free groups F (S) generated by S; as
follows. A word w in S is a �nite sequence of elements which we write as

w = y1 � � � yn;
where yi 2 S:

The number n is called the length of the word w; we denote it by jwj : The
empty sequence of elements is also allowed. We denote the empty word by e and
set its length to be jej = 0: Consider the set S�1 =

�
s�1js 2 S

	
where s�1 is just

a formal expression. We call s�1 the formal inverse of s: The set

S �1 = S [ S�1;
is called the alphabet of F; and an element y 2 S �1 of this set is called a letter.
By s1 we mean s, for each s 2 S: An expression of the type

w = s�1i1 � � � s
�n
in
; sij 2 S; �j 2 f1;�1g ;

is called a group word in S: A word w is called reduced if it contains no subword
of the type ss�1 or s�1s; for all s 2 S:

Definition 2. A group G is called a free group if there exists a generating
set S in G such that every nonempty reduced group word in S de�nes a nontrivial
element of G: If this is the case, then one says that G is freely generated by S (or
that G is free on S), and S is called a free basis of G:

Reduction Process
Let S be an arbitrary set. To construct a free group with basis S; we need to

describe a reduction process which allows one to obtain a reduced word from an
arbitrary word. An elementary reduction of a group word w consists of deleting a
subword of the type yy�1 where y 2 S�1 from w: For instance, let w = uyy�1v for
some words u and v in S: Then the elementary reduction of w with respect to the
given subword yy�1 results in the word uv: In this event we write

uyy�1v ! uv:

A reduction of w (or a reduction process starting at w) consists of consequent
applications of elementary reductions starting at w and ending at a reduced word:

w ! w1 ! � � � ! wn;

wn is reduced. The word wn is termed a reduced from of w:

Lemma 1. For any two elementary reductions w ! w1 and w ! w2 of a group
word w in S there exist elementary reductions w1 ! w� and w2 ! w�; so that the
following diagram commutes.

w
. &

w1 w2
& .

w�
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Proof. Let �1 : w ! w1 and �2 : w ! w2 be elementary reductions of a word
w: We distinguish the following two cases.

(1) Disjoint reductions. In this case w = u1y1y
�1
1 u2y2y

�1
2 u3 where yi 2 S�1;

and �i deletes the subword yiy
�1
i ; i = 1; 2: Then

�2 � �1 : w ! u1u2y2y
�1
2 u3 ! u1u2u3(2.1)

�1 � �2 : w ! u1y1y
�1
1 u2u3 ! u1u2u3;(2.2)

(2) Overlapping reductions. In this case y1 = y2 and w takes on the following
form w = u1yy

�1yu2: Then

�2 : w = u1yy
�1yu2 ! u1yu2; and(2.3)

�1 : w = u1
�
yy�1

�
yu2 ! u1yu2:(2.4)

�

Proposition 1. Let w be a group word in S: Then any two reductions of w :

(2.5) w ! w
0

� ! � � � ! w
0

n; and

(2.6) w ! w
00

� ! � � � ! w
00

n;

result in the same reduced form, in other words, w
0

n = w
00

n:

Proof. The proof is by induction on jwj : If jwj = 0 then w is reduced and
there is nothing to prove. Let now jwj > 1: Then by the Lemma (1), there are
elementary reductions w

0

� ! w�, and w
00

� ! w�: Consider a reduction process for

(2.7) w� ! w1 ! � � � ! wk:

This corresponds to the following diagram:

w
. &

w
0

� w
00

�
. & . &

w
0

1 w� w
00

1

# # #
� � � w1 � � �
# # #
w
0

n � � � w
0

m

#
wk

�

For a group word w; by �w we denote the unique reduced form of w: Let F (S)
be the set of all reduced words in S: For u; v 2 F (S) we de�ne multiplication u � v
as follows:

u � v = uv:

Theorem 1. The set F (S) forms a group with respect to the multiplication
" � ": This group is free on S:
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Theorem 2. Let F be a group with a generating set S � S: Then F is freely
generated by S i¤ F has the following universal property. Every map � : S ! G
from S into a group G can be extended to a unique homomorphism ~� : F ! G so
that the diagram below commutes

S
i
,! FS
�& # ~�

G

Where i is the inclusion of S into F: Where ~� � i = �:

Proof. Let F be a group freely generated by S and let � : S ! G be a map
from S into a group G: Since F = F (S) is freely generated by S; every element
g 2 F is de�ned by a unique reduced word in S�1: Let

g = s�1i1 � � � s
�n
in
; sij 2 S; �j 2 f1;�1g :

We set ~� (g) to be

~� (g) = ~�
�
s�1i1 � � � s

�n
in

�
= ~�

�
s�1i1
�
� � � ~�

�
s�nin
�

= ~� (si1)
�1 � � � ~� (sin)

�n :(2.8)

We claim that ~� is a homomorphism. Indeed, let g; h 2 F be so that

g = y1 � � � ynz1 � � � zm;

and
h = z�1m � � � z�11 yn+1 � � � yk

are the corresponding reduced words in S; where yi; zj 2 S�1 and yn 6= y�1n+1 (we
allow the subwords y1 � � � yn; z1 � � � zm and yn+1 � � � yk to be empty). Then

gh = y1 � � � ynz1 � � � zmz�1m � � � z�11 yn+1 � � � yk
= y1 � � � ynyn+1 � � � yk:

~� (gh) = ~� (y1 � � � ynyn+1 � � � yk)
= ~� (y1) � � � ~� (yn) ~� (yn+1) � � � ~� (yk)
= ~� (y1) � � � ~� (yn) ~� (z1) � � � ~� (zm) ~�

�
z�1m
�
� � � ~�

�
z�11
�
~� (yn+1) � � � ~� (yk)

= ~� (g) ~� (h) :

Hence ~� is a homomorphism. Clearly, ~� extends � and the corresponding diagram
commutes. Observe that any homomorphism

~� : F ! G;

that makes the diagram commutative, must satisfy the equality (1:8) ; so ~� is unique.
This shows that F satis�es the required universal property. Suppose now that
a group F = FS with a generating set S satis�es the universal property. Take
G = F (S) and de�ne a map

� : S ! G; by

� (s) = s; for each s 2 S:
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Then by the universal property � extends to a unique homomorphism
~� : F ! F (S) :

Let w be a nonempty reduced group word on S: Then w de�nes an element g in
F for which ~� (g) = w 2 F (S) : Hence ~� (g) 6= 1 and i (w) = g; then ~� � i (w) =
~� (g) = w = � (w) ; so that the diagram commutes

S
i
,! FS
�& # ~�

G

�

3. Word problem and conjugacy problem

Definition 3. (Cyclically reduced word) Let w = y1y2 � � � yn be a word in the
alphabet S�1: The word w is cyclically reduced, if w is reduced and yn 6= y�11 :

Example 3. The word w = s1s3s
�1
2 is cyclically reduced, whereas neither u =

s1s
�1
2 s1s3s2s

�1
1 ; nor v = s1s

�1
3 s3s

�1
2 is a cyclically reduced.

Lemma 2. The word and the conjugacy problem in a free group are solvable.

Observed that there is an (obvious) algorithm to compute both reduced and
cyclically reduced forms of a given word w: Our algorithm to solve the word problem
is based on

Proposition 2. A word w represents the trivial element in F (S) i¤ the reduced
form of w is the empty word.

Two cyclically reduced words are conjugate i¤ one is cyclic shift of the other.

Example 4. u = s1s2s3s4s
�1
2 s�11 , then u is conjugate to s3s4; i.e.

u = (s1s2) s3s4
�
s�12 s�11

�
= (s1s2) s3s4 (s1s2)

�1
:

Example 5. s3s4s
�1
3 s5 is conjugate to s

�1
3 s5s3s4; i.e.

(s3s4)
�1 �

s3s4s
�1
3 s5

�
s3s4:

which is of the form uv = u (vu)
�1
u:

4. The isomorphism problem

Theorem 3. Let G be freely generated by a set S; and let H be freely generated
by a set U: Then G �= H i¤ jSj = jU j.

Proof. Let G �= H: Let K =


g2; g 2 G

�
� G CG; where K is the subgroup

generated by the squares.�
g1gg

�1
1

�2
=
�
g1gg

�1
1

� �
g1gg

�1
1

�
= g1g

2g�11 :

Consider the quotient group G
K ; we show that

G
K is Abelian. Take a commutator

[�g1; �g2] 2 G
K ; then de�ne a map

� : G! G

K
;
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and we show that the commutator has order 2.

[�g1; �g2] = �g�11 �g�12 �g1�g2 = �g
�1
1

�
�g21�g

2
2

�
�g�12 �g1�g2

= (�g1�g2) �g1�g2 = (�g1�g2)
2
= 1:

Therefore G
K is Abelian. If s 2 S then �s 6= 1 in G

K : This is di¤erent letters are send
to di¤erent letters. Now s1s

�1
1 is not in K: So is reduced of length 2: This is

G

K
�= Z2 � Z2 � � � � � Z2 � Z2 = jSj :

Similarly for H
K1
; we have

H

K1

�= Z2 � Z2 � � � � � Z2 � Z2 = jU j :

�

Seifert-van Kampen Theorem

Let X be a path connected topological space. Suppose that X = U [ V where
U and V are path-connected open subsets and U \ V is also path-connected. For
any x 2 U \ V; the commutative diagram

�1 (U [ V; x) ! �1 (U; x)
# #

�1 (V; x) ! �1 (X;x)

is a push out.

Definition 4. The rose with n petals, denoted Rn; is the graph with one vertex
� and n oriented edges e1; � � � ; en:

Theorem 4. Let X be a rose with jSj petals, that is, the wedge of jSj copies
of S1 index by S: Then �1 (X) = FS :

Proof. Let S be �nite. The proof is by induction on jSj : If S is empty, we
take the wedge of 0 circles to be a point. Let X be a wedge of jSj circles, let U
be (a small open neighborhood of ) the circle corresponding to some �xed element
s� and let V be the union of the circles corresponding to T = Sns�: �1 (U) �= Z;
�1 (V ) �= FT by induction. Let i : S ! �1 (X) be the map sending s to a path that
goes around the circle corresponding to s:

Consider a set map f from S to a some group G: There is a unique homomor-
phism

f1 : �1 (U)! G �
f1 � i (s�) = f (s�) ;

and unique homomorphism

f2 : �1 (V )! G �
f1 � i (t) = f (t) ;

8t 2 T: It follows from the Seifert-van Kampen theorem that there is a unique
homomorphism bf : �1 (U)! G;

extending f1 and f2: �
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Nielsen- Schreier Theorem
This theorem implies that every free group is the fundamental group of a graph
(i.e. a one dimensional CW complex). This has a strong converse.

Theorem 5. A group is free i¤ it is the fundamental group of a graph.

It is enough to show that every graph is homotopy equivalent to a rose. Let
� be a graph, and let T be a maximal subtree in �: Any tree is contractible to a
point. Therefore � is homotopy equivalent to a rose.

Theorem 6. Every subgroup of a free group is free.

Proof. Think of a free group F as a fundamental group of a graph X: Let
H be a subgroup of F; and let X

0
be the covering space of X corresponding to H:

Then X
0
is a graph and H = �1

�
X

0
�
so H is free. �

Definition 5. The rank of an open surface is the least number of cuts required
to make the surface homeomorphic to a disk.

Definition 6. Alternative de�nition of a rank: Rank is the greatest number of
non-intersecting cuts which can be made without making the surface disconnected.

Theorem 7. (Schreier Index Formula) If H is a subgroup of Fr of �nite index
k then the rank of H is 1 + k (r � 1) :

Proof. Again, let Fr = �1 (X) and let H = �1

�
X

0
�
; where X is the rose

with r petals and X
0
is a covering space of X: It is standard that

(4.1) �
�
X

0
�
= k� (X) ;

Euler characteristic class function. If X is the rose with r petals it is clear that

� (X) = 1� r: Similarly, the rank of H is 1��
�
X

0
�
: Then we have 1��

�
X

0
�
=

k (1� r) =) by (1:9) that

1 + k (r � 1) = �
�
X

0
�
;

�
Hanna Neumann conjecture (~1954).
Conjecture: Let H;K � F (X) be two nontrivial �nitely generating subgroups

of a free group F (X) and let L = H \ K be the intersection of H and K: The
conjecture says that in this case

rank (L)� 1 � (rank (H)� 1) (rank (K)� 1) :
Here the rank (G) = the smallest size of a generating set for G, (where G is a
group). Now the rank ( free group) =the size of any free basis of the free group.

Theorem 8. Every subgroup H � F of a free group F is free, and given
generators of H we can compute its basis.

Before proving this theorem we need to develop some machinery that will allow
us to associate to any subgroup of a free group an automaton, i.e. a �nite oriented
labeled graph, that accepts only elements of H: Such an automaton is called � (H)-
the Stallings graph of H:
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Example 6. � (H) for H =


aba2; a�1b2; aba�2b

�
:

Remark 1. Traversing an edge a! forward, i.e. along its direction, we read a,
and traversing it backward, we read a�1:

Definition 7. One way reading property (OR)- no two edges outgoing from a
vertex are labeled by the same symbol.

Definition 8. A path in � (H) is a sequence e�11 e
�2
2 � � � e�nn ; where ei are edges

and �i = �1: We say that a path is reduced if it contains no subpaths eie�1i or
e�1i ei: The subgroup H corresponds to labels of loops beginning at V� in � (H) :

Fact: Every element of H is a loop from V� in � (H) :
This gives an easy procedure to decide whether g 2 H of not. However, how

does one construct � (H) ; given H � F?

Example 7. Suppose H =


ab2a; a�1b2; aba�2b�3a�1

�
:

(�)
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we use the following reduction with H;

so that (�) is of the form
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or

or

or
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which is the �nal result � (H) ; the graph has the (OR) property.

Definition 9. An oriented graph � consists of a set of vertices V (�) ; a set of
edges E (�) ; and two functions,

E ! V � V
e 7! (� (e) ; � (e)) ; (endpoints of e) ;

and

E ! E

e 7! �e := (� (e) ; � (e)) ; (inverse of e) :

Definition 10. For the graph,
(1) u; v 2 V are adjacent if 9 (u; v) 2 E:
(2) A path in � is a sequence of edges e1e2 � � � en � � (ei) = � (ei+1) for i =

1; � � � ; n� 1:
(3) A path is simple if all � (ei) are distinct.
(4) A path is a loop if � (e1) = � (en) :
(5) A path is reduced if �ei 6= ei+1 8i:
(6) A graph is connected if there is a path between any two vertices.
(7) A graph is a forest if it does not have simple loops.
(8) A graph is a tree if it is a connected forest.

Remark 2. In a tree T;8 u; v 2 V (T ) ;9! reduced path joining u and v:

Proof. Sketch. If p1; p2 are two di¤erent paths, p1p2 is a loop. Removing
pairs e�e from it makes it reduced. Contradiction. �

Definition 11. This unique path is called a geodesic between u and v:

By Zorn�s Lemma, every connected graph � has a maximal subtree T �: If � is
�nite, there is an algorithm to construct T � :

(1) Take an edge.
(2) Add edges without forming a simple loop.
(3) Stop when no more edges can be added.

Labeled graphs with orientation

Definition 12. Let G = (V;E) be a graph.
(1) An orientation is E+ � E such that

E+ \ E+ = ?; E+ [ E+ = E; if

e = (u; v) ; then �e = (v; u) :

(2) Given an orientation E+; and an alphabet S = fa; b; � � � g : We set S�1 :=�
a�1; b�1; � � �

	
: A labeling is a function

� : E+ ! S;

such that 8e 2 E+; (� (e) = x) =)
�
� (�e) = x�1

�
:

Definition 13. A Cayley graph of a group G = hSjRi is the labeled graph
Cayley(G) = (V;E; �) ; where V = G and

(8s 2 S) (8g 2 G) (9e 2 E+) (e = (g; gs) ; � (e) = s) :
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Example 8. Cayley(D3) where D3 =


r; �j�3 = 1; r2 = 1; �3�r = 1; �r = r��1

�
;

where jD3j = 6: Then we see that
D3 =

�
e; �; �2; r; �r; �2r

	
:

Example 9. Let F = F (a; b) be a free group on two elements. Then Cayley
(F ) is

Remark 3. Cayley(G) ; where G = hSjRi is a tree i¤ G is a free group with
basis S:

Proof. If Cayley(G) is a tree, then every word in S� corresponds to a unique
vertex in the graph, and this vertex is di¤erent from 1: Hence, this word is di¤erent
than 1:

Conversely, if Cayley(G) is not a tree, 9 a simple loop from some g 2 G :
e1e2 � � � en;

� (en) = � (e1) = g:

Thus, g = g� (e1e2 � � � en) = g� (e1)� (e2) � � �� (en) ; implies that
� (e1) � � �� (en) = 1:
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That is there is a reduced word in G that is equal to the identity, hence, G is not
free. �

Let H � F = F (S) be de�ned as H = hg1; � � � ; gki : Construct  (H) by
drawing loops corresponding to the generatrix starting from V�: As the generating
set H is �nite, this process must stop, so we will end up with � (H)-the Stalling�s
graph of H with the (OR) property.

In  (H) ; g 2 H i¤ g is a label of a loop at V� in  (H) : This property is
preserved during foldings, thus it is also true for � (H) : This proves that fact
above.

Schreir�s graph
The graph of right cosets of H; denoted by �� (H) ; is called the Schreir�s graph of
H:

V (��) =
G

H
= fHgjg 2 set of right cosets representativesg ;

8Hg;8s 2 S;9e 2 E+; e = (Hg;Hgs) ; � (e) = s:

Theorem 9. If F = F (S) ; H � F; then � (H) is the minimal subgraph of
�� (H) ; containing all loops at V� in H:

Proof. Sketch of the proof. Core (�� (H)) = fminimal subgraph containing all simple loops at vertex V�g :
Then every coset corresponds to a vertex.

� (H) � Core (�� (H)) :
If s�1i1 � � � s

�n
in
is label of a loop of � (H) then Hs�1i1 � � � s

�n
in
= H; since s�1i1 � � � s

�n
in
2 H:

Conversely, suppose we have a loop in Core (�� (H)) then by de�nition Core (�� (H))
contains all simple loops of H at V�. �

Example 10. � (H) for H =


ab2a; a�1b2; aba�2b; a�1b�1a�2b

�

A label graph � is complete if for any v 2 �;8s 2 Salphabet 9 edge labeled by s
and s�1 outgoing from V�:

Exercise 1. Prove [F : H] <1, � (H) is complete.
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Chapter 2

Theorem 10. Every subgroup H � F of a free group F is free. Given a �nite
number of generators of H we can compute its basis.

Example 11. Free group F = F (a; b) ; H =


ab; a2b

�
;

and then we form

Schreier�s graph

17
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The graph of right cosets of H, denotes by �� (H) ; is called the Schreir�s graph of
H:

V (��) =
G

H
= fHgjg 2 set of right coset representativesg ;

8Hg; 8s 2 S; 9e 2 E+; e = (Hg;Hgs) ; � (e) = s:

Theorem 11. If F = F (S) ; H � F; then � (H) is isomorphic to the min-
imal subgraph of �� (H) ; containing all loops at v� = H; (we call that subgraph
Core (�� (H)) : )

Example 12. � (H) for H =


ab2a; a�1b2; aba�2b; a�1b�1a�2b

�
; has three

simple loops

Algorithm for �nding a basis for H

Let H � F (a; b) : Now for example H =


ab2a; a�1b2; aba�2b; a�1b�1a�2b

�
:

(1) Construct � (H) :
(2) Let T be a maximal subtree in � (H) ( not unique) :
(3) If v 2 V (�) ; denote by gv the unique geodesic from v� to v in T:
(4) Let e 2 E+ (�nT ) be a positively oriented edge that is not on the tree T:

Set
Se = �

�
g�(e)

�
� (e)�

�
g�1�(e)

�
=) Se 2 H

Example 13. For example in H�;

Se = b�1|{z}
�(g�(e))

�(e)z}|{
a ab�1a�1| {z }

�
�
g�1
�(e)

�
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Remark 4. If e =2 E+ (�nT ) ; we de�ne Se similarly, but then Se = 1 (the
empty word). Indeed, by uniqueness of geodesic,

g�1�(e) = e�1g�1�(e):

Claim 1. The set fSeje 2 E+ (�nT )g form a free basis of H:

Proof. Let w 2 H be arbitrary. Since � (H) accepts w: There exist a reduced
loop at v�; e1e2 � � � en such that

� (e1e2 � � � en) = w:

But this loop can be written as

nY
i=1

�
g�(ei)eig

�1
�(ei)

�
=

�
g�(e1)e1g

�1
�(e1)

�
� � �
�
g�(en)eng

�1
�(en)

�
=

 
g�(e1)

"
nY
i=1

ei

#
g�1�(en)

!
=

"
nY
i=1

ei

#
:

Because g�(en) = g�(en�1), g�(en�1) = g�(en�2);��� ; g�(e2) = g�(e1) are trivial. Thus

nY
i=1

Sei = w:
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However, as Sei = 1 if ei 2 T; the set fSeje 2 E+ (�nT )g is generating.
On the other hand, for the product Se1Se2 ; where e1 6= e�12 ; e1; e2 2 E+ (�nT ) ;

the corresponding path is

P =
�
g�(e1)e1g

�1
�(e1)

�
| {z }

Se1

�
g�(e2)e2g

�1
�(e2)

�
| {z }

Se2

:

Every edge in g�(�); g�(�) belongs to the tree, while e1 6= e�12 do not belong to the
tree. A geodesic in the tree but not in the graph. Thus

e1; and e2 cannot be cancelled in P: This implies that Se1Se2 6= 1: Hence
fSeje 2 E+ (�nT )g ;

is a basis of H and
H = hSeje 2 E+ (�nT )i

�

Corollary 1. Every subgroup of a free group is free, rank (H) = E � V + 1:
Example 14. The rank of a tree is given by: rank (T ) = ET � VT + 1 = 0:
Example 15. Consider F = F (a; b) ; and H =



aba�1b�1; ab2ab�1; babab�1

�
;

H has only two basis elements. Construct � (H) and fold it.
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The red edges indicate the maximal subtree chosen. Thus ET = fe1; e2g and

Se2 = b (a) b�1a�1; Se1 = ab (b) ab�1:

Then, the rank of H is 2:

Definition 14. The graph � (H) is called complete (or S� regular) if 8v 2
� (H) and for 8s 2 S (the alphabet), there exists an edge labelled by s and s�1 from
v:

Theorem 12. Suppose F;H are �nitely generated, then

[F : H] <1, � (H) is complete,

in that case, [F : H] = j� (H)j = jV (�)j :

Proof. ((=)
Suppose � (H) is complete. Recall that � (H) � �� (H) ; the graph of right

cosets of H:� (H) implies that �� (H) = � (H) : Indeed, for any coset Hg; g is a
reduced word in F (S) : By completeness, we can read g as path (not necessarily a
loop) in � (H) : The label of this path is a representative of Hg; which means that

�� (H) � � (H) =)
�� (H) = � (H) :

H is �nitely generated.

j� (H)j < 1 =)
j�� (H)j < 1 =)
[F : H] < 1:

(=))
If [F : H] <1; �� (H) = Core (�� (H)) because every reduced word in F is a

beginning of the label of a loop at H: Therefore

�� (H) = � (H) ;

and � (H) is complete. �

Example 16. F = F (a; b) ; and H =


ab�1ab; a2ba2; ab�2; ababa�1; ba�1b2; a2b�3ba�1

�
;

(1) Construct � (H) ::
(2) Find [F : H] :
(3) The number of elements in the basis for H is the rank of H; rank (H) =

E � V + 1:
(4) Is w = a3ba�1ba 2 H?
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Proof. � (H) is given by the

As a2b�3 2 H; we need to identify the yellow vertices, which implies that the green
vertices must be identify too. This produces the �nal result:
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Thus, the rank of H is the number of fundamental simple loops =6. To �nd the
basis let us choose a maximal subtree (blue edges)

There are 6 non tree edges (green) and the basis corresponding to them is�
aa
�
b�1
�
a�1; aa [a] ba�1; aa [b] a�1ba�1; [b] ba�1; ab�1a [b] ; ab�1a [a] a

	
:

There is a vertex of degree 2 (yellow), so � (H) is not complete, i.e. [F : H] =
1: Also, w =2 H; as it is not a label of a loop around v�: �

Example 17.

You can go forever.

Spanning trees and free bases

We will use notation G = L (�; v) meaning that the group G is a language accepted
by the automaton � (G) : We say that � is folded if it has OR property. When we
say that � is connected we mean that it is connected as a non directed graph.

Definition 15. Let � be an X� digraph and let v be a vertex of �: Then the
core of � at v is de�ned as :

Core (�; v) = [fpjwhere p is a path in � from v to vg :
It is easy to see that Core (�; v) is a connected subgraph of � containing v: If
Core (�; v) = � we say that � is a core graph with respect to v:
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Example 18.

but

Definition 16. (Nielsen set) Let S be a set of nontrivial elements of the free
group F (X) such that S \ S�1 = ?: We say that S is Nielsen reduced with respect
to the free basis X if the following conditions hold:

(1) If u; v 2 S [ S�1 and u 6= v�1 then ju � vjX � jujX and jv � ujX � jvjX :
(2) If u; v; w 2 S [ S�1 and u 6= w�1; v 6= w�1 then ju � w � vjX > jujX +
jvjX � jwjX :

Remark 5. Condition (1) means that no more than a half of u and no more
than a half of v freely cancels in the product u�v: Condition (2) means that at least
one letter of w survives after all free cancellations in the product u � w � v:

Definition 17. (Geodesic tree) Let � be a connected graph with a base vertex
v: A subtree T in � is said to be geodesic relative to v if v 2 T and for any vertex
u of T the path [v; u]T is geodesic in �; that is a path of the smallest possible length
in � from v to u:

How to construct a Geodesic tree? Answer: by induction.
Let B (v; n) be a ball of radius n in �; this implies that

B (v; n) = fu 2 �j [u; v]T � ng :
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Where v 2 T ; V Tn = B (v; n) : Suppose that Tn�1 is constructed and that the path
[w; v] = n: Then there exists e = (u;w) ; [u; v] = n � 1: Now add e to T: Then we
do it for all vertices so that

T =
1[
i=1

Tn;

and such a tree can be constructed.

It is easy to see that geodesic spanning trees always exist:

Lemma 3. Let � be a graph (whether �nite or in�nite) with a base vertex v:
Then there exist a geodesic relative to v spanning tree T for �:

Example 19. The �rst spanning tree is not geodesic
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but if we choose that following,

it is.

Proposition 3. Let � be a folded X� digraph which is a core graph with
respect to a vertex v of �: Let H = L (�; v) � F (X) and let T be a spanning tree
in � which is geodesic with respect to v: Then the set YT is a Nielsen reduced free
basis of the subgroup H:

1. Embeddings of free groups

We say that a group G embeds into a group H; if there is a monomorphism

� : G! H:

If � (G) $ H; then we say that G properly embeds into H and that � is a proper
embedding.

Proposition 4. Any countable free group G can be embedded into a free group
of rank 2:

Proof. To prove the result it su¢ ces to �nd a free subgroup of countable rank
in a free group of rank 2: Let F2 be a free group with a basis fa; bg : Denote

xn = bnab�n (n = 0; 1; 2; � � � )
and let S = fx�; x1; x2; � � � g : We claim that S freely generates the subgroup hSi in
F2: Indeed, let

w = x�1i1x
�2
i2
� � �x�nin ;

be reduced nonempty word in S�: Then w can also be consider a word in fa; bg :
Indeed,

w = bi1a�1b�i1bi2a�2b�i2 � � � bina�nb�in :
Since w is a reduced word in S; we have that either ij 6= ij+1; or ij = ij+1 and
�j + �j+1 6= 0; for each j = 1; 2; � � � ; n� 1: In either case, any reduction of w (as a
word in fa; bg) does not a¤ect a�j and a�j+1 in the subword

bija�j b�ij bij+1a�j+1b�ij+1 ;

i.e., the literals a�j and a�j+1 are present in the reduced form of w as a word in
fa; bg�1 : Hence the reduced form of w is nonempty, so w 6= 1 in F2: Clearly, hSi is
a free group of countable rank. �
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2. Free products

Given a family of groups fGiji 2 Ig we may assume that the Gi are mutually
disjoint sets. Let X =

[
i2I

Gi and let f1g be a one element set disjoint from X: A

word in X is a �nite string (a1; a2; � � � ; an; 1; 1; � � � ) = a1a2 � � � an; where ai 2 X: A
word is reduced provided

(1) no ai is the identity in its group Gj ;
(2) for all i; ai and ai+1 are not in the same Gj ;
(3) ak = 1 implies ai = 1 for i � k:

Let
�Y
i2I

Gi or G1�G2�� � ��Gn be the set of all reduced words on X: Then
�Y
i2I

Gi

forms a group, called the free product of the family fGiji 2 Ig under the operation
"justaposition +cancellation+contraction",

Example 20. If aibi 2 Gi then (a1a2a3)
�
a�13 b2b1b3

�
= a1c2b1b3; where c2 =

a2b2 2 G2:

3. Basic properties of subgroup graph

Definition 18. (Type of a core graph) Let � be a folded X� digraph which is
a core graph with respect to some vertex. Suppose that � has at least one edge. If
every vertex of � has degree at least two, we set the type of �; denoted Type (�) = �:
Suppose now that � has a vertex v of degree one (such a vertex is unique since � is a
core graph). Then there exists a unique vertex v

0
of � with the following properties:

(1) There is a unique ��geodesic path
h
v; v

0
i
from v to v

0
and every vertex

of this geodesic, other than v and v
0
; has degree two.

(2) The vertex v
0
has degree at least three.

Let �
0
be the graph obtained by removing from � all the edges of

h
v; v

0
i
and

all the vertices of
h
v; v

0
i
except for v

0
: Then �

0
is called the type of � and denoted

Type (�) : Finally, if � consists of a single vertex, we set Type (�) = �:

Type of core de�nition:



28 2. CHAPTER 2

Lemma 4. Let � be a folded core graph (with respect to one of its vertices). Let
v and u be two vertices of � and let q be a reduced path in � from v to u with label
g 2 F (X) : Let H = L (�; v) and K = L (�; u) : Then H = gKg�1:
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We want H = gKg�1: This is language (language consist of loops) accepted by the
automaton by �:

This is K = L (�; v) and H
0
= L

�
�
0
; w
�
then it is clear that H

0
= gKg�1: We see

that � is the folded graph for �
0
(w ! v) : Therefore we have H

0
= H:

If we consider several subgroups (H;K) we often will denote distinguished
vertices of their Stallings graphs by 1H ; 1K :

Lemma 5. Let H � F (X) and let � = � (H) : Let g 2 F (X) be a nontrivial
freely reduced word in X: Let g = yz where z is the maximal terminal segment of
the word g such that there is a path with label z�1 in � starting at 1H (such a path
is unique since � is folded). Denote the end vertex of this path by u: Let �

0
be the

graph obtained from � as follows. We attach to � at u the segment consisting of jyj
edges with label y�1; as read from u: Let u

0
be the other end of this segment. Put

�
00
= Core

�
�

0
; u

0
�
: Then

�
�

00
; u

0
�
= (� (K) ; 1K) where K = gHg�1:

(3.1)

L
�
�

00
; u
�
= (� (K) ; 1K) ; then K = gHg�1: Every ghg�1 is a label of a loop

originating in u
0
= 1K then K � gHg�1 this is (u0u1Hu�1u

0
): Now if do the fold
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(3:1) we obtain

(3.2)

loops at u
00
in � are all s of gHg�1:

Proposition 5. (conjugate subgroups) Let H and K be subgroups of F (X) :
Then H is conjugate to K in F (X) if and only if the graphs Type (� (H)) and
Type (� (K)) are isomorphic as X� digraphs.

Proof. Suppose that Type (� (H)) = Type (� (K)) = �: Let v be a vertex of
�: The subgroup L (�; v) is conjugate to both H and K; so that H is conjugate
to K: If we remove the hair from the �gure we still have a subgroup conjugate to
Hand K: Because Type (� (H)) = Type (� (K))

Suppose now that K is conjugate to H; (H �= K) that is K = gHg�1 for some
g 2 F (X) : Then Type (� (H)) = Type (� (K)) ; as required.
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L (� (H) ; v)

�

4. Morphism of labelled graphs

Let � and � be reduced A�labelled graphs as above. A mapping � from the
vertex set of � to the vertex set of � (we write � : �! �) is a morphism of reduced
(A)� labelled graphs if it maps the designated vertex of � to the designated vertex
of � and if, for each a 2 A;whenever � has an A�labelled edge e from vertex u
to vertex v; then � has an A� labelled edge f from vertex � (u) to vertex � (v) :
The edge f is unique de�ned since � is reduced. We then extend the domain
and range of � to the edge sets of the two graphs, by letting � (e) = f: Note that
such a morphism of reduced A� labelled graphs is necessarily locally injective (an
immersion), in the following sense: for each vertex v of �; distinct edges starting
(respectively ending) at v have distinct images.

Further we say that the morphism

� : �! �

is a cover if it is locally bijective, that is, if the following holds: for each vertex v
of �; each edge of � starting (respectively ending) at � (v) is the image under � of
an edge of � starting (respectively ending) at v:

5. Intersection of subgroups

If H and K are �nitely generated subgroups of F (A) ; then �A (H \K) can
be easily constructed from �A (H) and �A (K) : one �rst considers the A� labeled
graph whose vertices are pairs (u; v) consisting of a vertex u of �A (H) and a vertex

v of �A (K) ; with an A� labelled edge from (u; v) to
�
u
0
; v

0
�
if and only if there

are A�labelled edges from u to u
0
in �A (H) and from v to v

0
in �A (K) : Finally,

one considers the connected component of vertex (1; 1) in this product, and we
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repeatedly remove the vertices of valence 1; other than the distinguished vertex
(1; 1) itself, to make it a reduced A�labelled graph.

Intersection of subgroups

Example 21. H =


bab�1; b2

�
; K =



a2; ba2b�1

�

Definition 19. (Product graph) Let � and � be X� digraphs. We de�ne the
product graph ��� as follows. The vertex set of ��� is the set V �� V�: For
a pair of vertices (v; u) ;

�
v
0
; u

0
�
2 V (���) ; so that v; v0 2 V � and u; u0 2 V�

and a letter x 2 X we introduce an edge labeled x with origin (u; v) and terminus1�
v
0
; u

0
�
provided there is an edge, labeled x; from v to v

0
in � and there is an edge,

labeled x; from u to u
0
in �: Thus � �� is an X� digraph. In this situation we

will sometimes denote a vertex (v; u) of ��� by v � u:
Lemma 6. Let � and � be folded X� digraphs. Let H = L (�; v) and K =

L (�; u) for some vertices v 2 V � and u 2 V�: Let y = (v; u) 2 V (���) : Then
��� is folded and L (���; y) = H \K:

1end of the line in French
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Corollary 2. There exists an algorithm which, given �nitely many freely
reduced words

h1; � � � ; hs; k1; � � � ; km 2 F (X) ;
�nds the rank and a Nielsen reduced free basis of the subgroup

hh1; � � � ; hsi \ hk1; � � � ; kmi ;
of F (X) : In particular, this algorithm determinates whether or not

hh1; � � � ; hsi \ hk1; � � � ; kmi = 1:

Corollary 3. (Howson Property) The intersection of any two �nitely gener-
ated subgroups of F (X) is again �nitely generated.

6. Exercises

Exercise 2. This exercise have three parts:
(1) Prove that the reduced form of a given element is unique.
(2) Prove that the map

ik : Gk !
�Y
i2I

Gi;

given by e! 1 and a! a = (a; 1; 1; � � � ) is a monomorphism. by Gi with

its image in
�Y
i2I

Gi:

(3) Prove that
�Y
i2I

Gi is a coproduct in the category of groups.

Exercise 3. Show that a subgroup H of F (A) has �nite index if and only if
this natural morphism from �A (H) to the bouquet of A circles is a cover, and in
that case, thee index of H in F (A) is the number of vertices of �A (H) :

Exercise 4. (Lemma) Let H;K be subgroups of a free group F with basis A:
Then H � K if and only if there exist a morphism of labeled graphs �H;K from
�A (H) to �A (K). If it exist, this morphism is unique.

Exercise 5. (Proposition) Let � be a folded X� digraph which is a core graph
with respect to a vertex v of �: Let H = L (�; v) � F (X) and let T be a spanning
tree in � which is geodesic with respect to v: Then the set YT is a Nielsen reduced
free basis of the subgroup H:
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Chapter 3

1. Intersection of Subgroups

Proposition 6. Let H;K � F (X) and g 2 F (X) : Let g = yz where z is the
maximal terminal segment of g such that z�1 is the label of a path in � (H) with
origin 1H : Let y = y

0
y
00
where y

0
is the maximal initial segment of y which is the

label of a path in � (K) with origin 1K :
Suppose that the word y

00
is nontrivial. Then

gHg�1;K

�
= gHg�1 �K:

Remark 6. In particular the intersection is non-trivial, i.e., gHg�1\K = feg :

Remark 7. Also � accepts


K [ gHg�1

�
:

Remark 8. rank
�

K [ gHg�1

��
= rank (K) + rank (H) ; all the generators

of H are independent since it is a folded graphs implies that

gHg�1 \K = feg

which implies that it is a free product.

Proof. (Proposition 6).

�

Proposition 7. Let H;K � F (X) : Let g 2 F (X) be such that the double
cosets KgH and KH are distinct. Suppose that gHg�1 \K 6= 1: Then there is a

35
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vertex v� u in � (H)�� (K) which does not belong to the connected component of
1H � 1K such that the subgroup

(z) L (� (H)� � (K) ; v � u) is conjugate to gHg�1 \K;
in F (X) :

Proof. If g 2 KgH; then
(|) gHg�1 \K; and g1Hg�11 \K; are conjugate
Let g1 = kgh for some k 2 K and h 2 H; then

g1Hg
�1
1 \K = kg

�
hHh�1

�
g�1k�1 \K

= kg (H) (kg)
�1 \K

= k
�
gHg�1 \K

�
k�1;

this implies (|)Conversely

Let g = yz where z is the largest terminal segment of g such that z�1 is the label
of a path in � (H) with origin 1H : Denote this path by � and the terminal vertex
of � by v; see picture. If the word y is not the label of a path in � (K) with origin
1K ; then by Proposition (6) we have that


gHg�1;K
�
= gHg�1 �K:

This implies that
gHg�1 \K = feg ;

contrary to our assumptions.
Thus y is the label of a path � in � (K) from 1K to some vertex u: Then set

L (� (H) ; v) = zHz�1 and L (� (K) ; u) = y�1Ky: Note also that

y
�
zHz�1 \ y�1Ky

�
y�1 = yzHz�1y�1 \K

= gHg�1 \K;
and therefore gHg�1 \K and zHz�1 \ y�1Ky are conjugate in F (X) :

L = L (� (H)� � (K) ; v � u) = zHz�1 \ y�1Ky
= gHg�1 \K;

as required.
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It remains to show that v � u does not belong to the connected component of
1H � 1K in � (H)� � (K) : Suppose this is not the case.

Then there exist a reduced path pv in � (H) from 1H to v and a reduced path pu
in � (K) from 1K to u such that their labels are the same, that is

� (pv) = � (pu) = �:

Note that pv��1 is a path in � (H) from 1H to 1H and therefore

� (pv��1) = �z = � � z = h 2 H:

Similarly, �p�1u is a path in � (K) from 1K to 1K and hence y ���1 = k 2 K: Thus
we have

g = y � z = y � ��1� � z
= k � h 2 KH;

contrary to our assumption that KgH 6= KH: �

Proposition 8. Let H;K � F (X) be two subgroups of F (X) : Then for any
vertex v�u of � (H)�� (K) the subgroup L (� (H)� � (K) ; v � u) is conjugate to
a subgroup of the form gHg�1 \K for some g 2 F (X) :

Moreover, it v�u does not belong to the connected component of 1H�1K ; then
the element g can be chosen so that KgH 6= KH:
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Proof. Consider

Let pv be reduced path in � (H) from 1H to v with label �: Similarly, let pu be
a reduced path in � (K) from 1K to u with label � : L (� (H) ; v) = ��1H� and
L (� (K) ; u) = ��1K�: Therefore

L (� (H)� � (K) ; v � u) = ��1H� \ ��1K�;
is conjugate to

���1H���1 \K;
and g = ���1 satis�es the requirement of the proposition.

Suppose now that v�u does not belong to the connected component of 1H�1K
in � (H) � � (K) but g = ���1 2 KH: Thus ���1 = kh for some k 2 K; h 2 H
and therefore

k�1� = h�:

Let � be the freely reduced form of the element k�1� = h�: Recall that k�1 2 K
and so k�1 is the label of a reduced p1 in � (K) from 1K to 1K : Then p1pu is a

path in � (K) whose label freely reduces to �: Therefore there is a reduced path
p
0

1 in � (K) from 1K to u with label �: Similarly, since h 2 H; there is a path p2
in � (H) from 1H to 1H with label h: Hence p2pv is a path in � (H) from 1H to v
whose label freely reduces to �: Again, it follows that there is a reduced path p

0

2 in
� (H) from 1H to v with label �: Now the de�nition of � (H)� � (K) implies that
there is a path in � (H)� � (K) from 1H � 1K to v � u with label �:

However, this contradicts our assumption that v � u does not belong to the
connected component of 1H � 1K : Thus g =2 KH and KgH 6= KH; as required �

The reduced rank:= �r (H) = max frank (H)� 1; 0g : In 1956 Hanna Neumann
asked:

The Hanna Neumann Conjecture (HNC) ;

�r (H \K) � �r (H) �r (K) :
In 1990 Walter Neumann formulated:

The Strengthened Hanna Neumann Conjecture (SHNC) ;X
x2Hn FK

�r
�
x�1Hx�1 \K

�
� �r (H) �r (K) :
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Proved by Mineeyev, July 2011 (see the slides about HNC ).

Definition 20. Let H be a subgroup of a group G: We say that H is a mal-
normal subgroup of G if for any g 2 G�H

gHg�1 \H = 1:

Definition 21. We say that H is cyclonormal if for any g 2 G�H

gHg�1 \H;

is cyclic.

Theorem 13. Let H � F (X) be a subgroup. Then H is malnormal in F (X)
if and only if every component of � (H)�� (H) ; which does not contains 1H � 1H ;
is a tree.

Remark 9. If H � F (X) ; H is a subgroup. Ask for a subgroup of type
H � K � K � K1 = F is a multiple. But not every subgroup of a free group is a
multiple. Then K is not represented, and H has �nite index. Which implies that
it is an algebraic extension, and since the algebraic extension is algebraic. Now the
following proposition is of this type.

Proposition 9. Let � be a folded connected X� digraph and let �
0
be a

connected subgraph of �: Let v be a vertex of �
0
: Then H = L

�
�
0
; v
�
is a free

factor of G = L (�; v) : Further, if �
0
does not contain Core (�; v) ; then H 6= G:

In particular, is both � and �
0
are core graphs with respect to v and �

0 $ � then
H 6= G:

Proof. Let T
0
be a spanning tree in �

0
: Then there exists a spanning tree T

of � such that T
0
is a subgraph of T: T

0
has no cycles. Take

YT =
�
Seje 2 E+ (�� T )

	
;

as generating set ofG: This was proved in lecture 2 as Claim 1. G hSeje 2 E+ (�� T )i

YT =
n
Seje 2 E+ (�� T ) ; e 2 �

0
o
[
n
Seje 2 E+ (�� T ) ; e =2 E�

0
o

=
n
Seje 2 E+

�
�
0
� T

0
�o
[
n
Seje 2 E+ (�� T ) ; e =2 E�

0
o

= YT 0 [ Z:

Then, we have 2 disjoint subsets,

G = F (YT ) = F (YT 0 ) � F (Z) = H � F (Z) ;

and H is a free factor of G as required.
Suppose now that �

0
does not contain Core (�; v) : We claim that there is a

positive edge e of � which does not belong to �
0
and is not in T: Assume this is

not the case. Then all edges outside of �
0
lie in T: Hence � � �0 � T is a union

of disjoint trees. This implies that Coore (�; v) is contained in �
0
; contrary to

our assumptions. Thus the claim holds and hence Z 6= ?: Therefore, H 6= G as
required. �

Remark 10. If the graph is not complete add edges to make it complete.
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Theorem 14. (Marshall Hall�s Theorem) Let H be a �nitely generated subgroup
of F (X) : Let g 2 F (X) be such that g =2 H: Then there exists a �nitely generated
subgroup K of F (X) such that

(1) L = hH;Ki = H �K;
(2) L has �nite index in F (X) ;
(3) g =2 L
Proof. Idea of the proof. Write g as a reduced word in X: Add a path with

label g beginning at 1H to � (H) : Fold the obtained graph (denote the result by

�). Add edges to � to obtain a �nite folded complete graph �
0
: L = L

�
�
0
; 1H

�
:

�H is a subgraph of �L

�
Remark 11. Hall�s theorem implies that a free group F (X) of a �nite rank

is subgroup separable , that is to say any �nitely generated subgroup of F (X) is
equal to the intersection of �nite index subgroup of F (X) containing H: This is an
important and nontrivial property of free groups. This can rephrase as follows:

Another de�nition G is a subgroup separable if 8 H � G; 8g 2 G �H 9 G a
�nite qoutient of G � �g =2 H ,(where H is the image).

Remark 12. A free group is subgroup separable. This implies residual �nite,
which follows from linearity.

2. Normal Subgroups

Theorem 15. (Normal subgroup) Let H � F (X) be a nontrivial subgroup of
F (X) : Then H is normal in F (X) i¤ the following conditions are satis�ed:

(1) The graph � (H) is X� digraph (so that there are no degree-one vertices
in � (H) and hence � (H) = Type (� (H))).

(2) For any vertex v of � (H) the based X�digraphs (� (H) ; 1H) and (� (H) ; v)
are isomorphic (that is L (� (H) ; v) = H).
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Definition 22. Let H be a subgroup of a group G: The commensurator CommG (H)
of H in G is de�ned as

CommG (H) =
�
g 2 Gj

��H : H \ gHg�1
�� <1; and ��gHg�1 : H \ gHg�1�� <1	 :

Proposition 10. The CommG (H) is a subgroup of G containing H:

Proof. Let g1; g 2 CommG (H) ; then
��H : H \ gHg�1

�� < 1; lets conjugate
by g1 so that ��g1Hg�11 : g1Hg

�1
1 \ g1gHg�1g�11

�� <1;
then the index of H is �nite [G : H] <1; then��H \ g1Hg�11 : H \ g1Hg�11 \ g1gHg�1g�11

�� <1;
this is a subgroup of �nite index has �nite index.��H : H \ g1gHg�1g�11

�� <1;
therefore, g1g 2 CommG (H) :

Now we conjugate by
�
g�11 g�1

�
so that����g�11 g�1

�
H
�
g�11 g�1

��1
:
�
g�11 g�1

�
H
�
g�11 g�1

��1 \ �g�11 g�1
�
gHg�1

�
g�11 g�1

��1��� <1;
then���H \ �g�11 g�1

�
H
�
g�11 g�1

��1
: H \

�
g�11 g�1

�
H
�
g�11 g�1

��1 \ �g�11 g�1
�
gHg�1

�
g�11 g�1

��1��� <1;
so that ��H : H \ g�11 Hg1

�� <1;
therefore g�11 2 CommG (H) : �

Lemma 7. Let H � F (X) be a nontrivial �nitely generated subgroup. Then

jF (X) : Hj <1;

i¤ F (X) = CommF (X) (H) :

Proof. (=))
It is obvious that

jF (X) : Hj <1;

implies F (X) = CommF (X) (H) :
((=)
Suppose now that H is a �nitely generated subgroup of F (X) and F (X) =

CommF (X) (H) : Assume that jF (X) : Hj =1: Then the graph � (H) is not X�
regular, we want a contradiction. Thus there is a vertex v 2 � and a letter x 2
X [ X�1 such that there is no edge labeled x with origin v in � (H) : Since H is
a nontrivial subgroup of in�nite index in F (X) ; the rank of F (X) ; the rank of
F (X) is at least two and so

#(X) � 2:
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Let a 2 X be a letter such that a 6= x�1:

Since for any g 2 F (X) we have
��gHg�1 : H \ gHg�1�� < 1; for any element

of gHg�1 some power of this element belongs to H \ gHg�1 and so to H: Hence
for any g 2 F (X) and any h 2 H there is n � 1 such that g�1hng 2 H: Let h 2 H
be a nontrivial element, so that h is a freely reduced word in X: Let y 2 X [X�1

be that �rst letter of h and let z 2 X [X�1 be the last letter of h: Then for any
m � 1 the freely reduced form hn begins with y and ends with z:

Let w be the label of a reduced path in � (H) ; from 1H to v:

Since there is no edge labeled x with origin v in � (H) ; any freely reduced word
with initial segment wx does not belong to H: Put q = y if y 6= z�1:
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If y = z�1 and y 2
�
x; x�1

	
; put q = a: If y = z�1 and y =2

�
x; x�1

	
; put

q = x: Then for any m � 1 the word qhmq�1 is freely reduced. (Recall that hm is
the freely reduced from of hm:) Contradicts the assumption that the graph is not
complete.

Choose a freely reduced word w
0
such that the word wxw

0
q is freely reduced.

This is obviously possible since X has at least two elements. Put g = wxw
0
q: By

our assumptions there is n � 1 such that the ghng�1 is

(1-z) wxw
0
qy � � � zq�1

�
w
0
��1

x�1w�1:

The word (1�z) has initial segment wx and hence cannot represent an element
of H: This yields a contradiction. �

Corollary 4. (Greenberg-Stallings Theorem) Let H;K be �nitely generated
subgroups of F (X) such that H \K has �nite index in both H and K: Then H \K
has �nite index in the subgroup hH [Ki :

3. Some other properties of free groups

Definition 23. G acts on a set if 8g 2 G; s 2 S and gs is de�ned, and gs 2 S
(G;S)! S

(1) es = s; 8s 2 S;
(2) g1 (g1s) = g1g2s:

Lemma 8. (Ping-Pong lemma) Let a group G, generated by a and b; act on a set
X: Assume that there are two nonempty subsets A and B of X, so that A\B = ?;
and an � B � A and bn � A � B for all integers n 6= 0: Then G is freely generated
by a and b:

Proof. Let w be a nonempty reduced word in the alphabet a�; b�: W.l.og.,
we can assume that w begins and ends with a�; for if not then for m large enough
a conjugate w1 = amwa�m of w does, and w = 1 i¤ w1 = 1: Let

w = an1bm1 � ank�1bmk�1ank ;

with ni;mi 6= 0: Then
wB = an1bm1 � ank�1bmk�1ank �B � an1bm1 � ank�1bmk�1 �A �

an1bm1 � ank�1 �B � � � � � an1 �B � A:
We have a reduced word. It follows that w 6= 1; and so a and b freely generated
G: �

Corollary 5. The matrices

A =

�
1 2
0 1

�
and B =

�
1 0
2 1

�
;

generate a free subgroup in SL2 (Z) :

Proof. Denote by G = hA;Bi the subgroup of SL2 (Z) generated by A and
B: The group G acts on X = R2 by left multiplication, and if we set

V =
n
[x; y]

T j jxj < jyj
o
and W =

n
[x; y]

T j jxj > jyj
o
;



44 3. CHAPTER 3

then
An �W � V; and Bn � V �W;

for all n 6= 0: Let
�
x
y

�
2 V;

A

�
x
y

�
=

�
x+ 2y
y

�
2W

jx+ 2yj > jyj :

A2 =

�
1 2
0 1

��
1 2
0 1

�
=

�
1 4
0 1

�
:

And

Bn
�
x
y

�
2 V:

By the Ping-pong lemma, G is freely generated by A and B: �

Definition 24. A group G is called linear if it can be embedded into a group
of matrices GLn (P) for some integer n � 1 and some �elds P.

Theorem 16. A free group of countable rank is linear. In particular, any
�nitely generated free group is linear.

Definition 25. A group G is called residually �nite if for any nontrivial ele-
ment g 2 G there exists a homomorphism

� : G! H;

such that G is map into a �nite group H so that � (g) 6= 1:

Clearly, �nite groups are residually �nite, and subgroups of residually �nite
groups are residually �nite.

Example 22. Prove that SLn (Z) is residually �nite.

Proof. Let M 2 SLn (Z) � M 6= I then M � 1 6= 0 9 mi = k we take a
homomorphism

�R : Z!
Z
pZ
;

this de�nes a homomorphism

�S : SLn (Z)! SLn

�
Z
pZ

�
;

Take p � if p - k; then � (M) 6= 1: �

Example 23. SLn
�
Z
pZ

�
�= �nite group.

Theorem 17. Free groups are residually �nite.

Theorem 18. Every �nitely generated subgroup of a linear group is residually
�nite.

Example 24. Q is not residually �nite. Because it is a divisible group.

Example 25. Finite groups are not divisible. Finite Abelian groups are not
divisible.
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Residually �nite groups are �nitely presented groups, i.e., G = hG j Ri ; where
G;R <1, and G has a solved word problem.

(1) We enumerate all consequences of relations if w = 1 in G we obtain w in
this process.

(2) Enumerate all �nite quotients � (G) of G: If w 6= 1 in G; then � (G) 6= 1;
in some �nite quotient.

4. Homomorphisms of groups

The universal property of free groups allows one to describe arbitrary groups
in terms of generators and relators. Let G be a group with a generating set S: By
the universal property of free groups there exists a homomorphism

' : F (S)! G; �
' (s) = s; 8s 2 S:

It follows that ' is onto, so by the �rst isomorphism theorem

G �=
F (S)

ker (')
:

In this event ker (') is view as the set of relators of G; and a group word w 2 ker (')
is called a relator of G in generators S: If a subset R � ker (') generates ker (') as
a normal subgroup of F (S) then it is termed a set of de�ning relations of G relative
to S: The pair hS j Ri is called a presentation of G; it determines G uniquely up
to isomorphism. The presentation hS j Ri is �nite if both sets S and R are �nite.
A group is �nitely presented if it has at least one �nite presentation. Presentations
provide a universal method to describe groups.

Example 26. G = hs1 � � � snj [si; sj ] ;8 1 � i < j � ni is the free abelian group
of rank n:

Example 27. Cn = hsjsn = 1i is the cyclic group of order n:

Example 28. Both presentations


a; bjba2b�1a�3

�
and



a; bjba2b�1a�3;

�
bab�1; a

��
de�ne the Baumslag-Solitar group BS (2; 3) :

If a group G is de�ned by a presentation, then one can try to �nd homomor-
phism from G into other groups.

Lemma 9. Let G = hS j Ri be a group de�ned by a (�nite) presentation with
the set of relators

R =
n
rj = y

(j)
i1
� � � y(j)ij jy

(j)
i 2 S�1; 1 � j � m

o
;

and let H be an arbitrary group. A map

 : S�1 ! H;

extends to a homomorphism e : G! H;

i¤

 (rj) =  
�
y
(j)
i1

�
� � � 

�
y
(j)
ij

�
= 1;

in H for all rj 2 R:
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Proof. De�ne the map e : G! H; bye (yn1 � � � ynt) =  (yn1) � � � (ynt) ;
whenever ynj 2 S�1: If e is a homomorphism, then obviously  (rj) = 1; 8rj 2 R:

The converse follows from

Lemma 10. (Mapping property of qoutient groups) Let N be a normal subgroup
of G; let G = G

N ; and let
�;G! G;

be the canonical map, � (g) = �g = gN: Let

� : G! G
0
;

be a homomorphism such that N � ker (�) : Then there is a unique homomorphism
� : G! G

0
;

such that �� � � = �: This map is de�ned by the rule � (�g) = � (g) :

G
�! G

�& # �
G

0

�

5. Exercises

Exercise 6. Prove the following theorem. (Normal subgroup) Let H � F (X)
be a nontrivial subgroup of F (X) : Then H is normal in F (X) i¤ the following
conditions are satis�ed:

Theorem 19. (1) The graph � (H) is X� digraph (so that there are no
degree-one vertices in � (H) and hence � (H) = Type (� (H))).

(2) For any vertex v of � (H) the based X�digraphs (� (H) ; 1H) and (� (H) ; v)
are isomorphic (that is L (� (H) ; v) = H).

Exercise 7. Prove the following theorem. (Greenberg-Stallings Theorem) Let
H;K be �nitely generated subgroups of F (X) such that H \K has �nite index in
both H and K: Then H \K has �nite index in the subgroup hH [Ki :

Exercise 8. Prove that the these presentations de�ne isomorphic groups. Both

presentations


a; bjba2b�1 = a3

�
and

D
a; bjba2b�1 = a3; ([b; a])

2
=
�
abb�1a�1

�2
= b
E

de�ne the Baumslag-Solitar group BS (2; 3) :
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Let G be a group, by the commutant (or derived subgroup) G
0
of G we mean

the subgroup generated by all the commutators

[g; b] = gbg�1b�1;

in G: Since a [g; b] a�1 =
�
aga�1; aba�1

�
; the commutant is a normal subgroup of

G: The qoutient G
G0 is called the Abelianization of G: This name is given to this

qoutient because G
G0 is an Abelian group.

Example 29. The Abelianization of a free group Fn is the free Abelian group
of rank n: In general, if

G = hs1 � � � sn j r1 � � � rmi ;
then

G

G0 = hs1 � � � sn j r1 � � � rm; [si; sj ] (1 � i < j � n)i

As the following corollary shows, the abelianization G
G0 is the largest Abelian

quotient of G; in a sense.

Corollary 6. Let H be an Abelian quotient of G; and let

v : G! G

G0 ;

and
 : G! H;

be the natural homomorphism. Then there is a homomorphism

' :
G

G0 ! H;

so that the following diagram commutes:

G ! G
G0

 & # '
H

Proof. Let G be generated by S = fs1; � � � ; sng ; then G
G0 is generated by

v (S) = fv (s1) ; � � � ; v (sn)g : We still denote v (si) by si; since we want to �x the
alphabet S� for both G and G

G0 : Hence, G
G0 has the presentation above. De�ne a

map

'
0

: v (S)! H; by

'
0
(si) =  (si) ; 8i:

47
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Observed that
'
0
(rj) =  (rj) = 1;

in H; since  is a homomorphism and rj = 1 in G: Also,

'
0
([si; sj ]) =  ([si; sj ])

= [ (si) ;  (sj)] = 1;

since H is Abelian. It follows now from the previous lemma that the map '
0

extends to a homomorphism from G
G0 to H: �

1. Generators and relations

The free Burnside group of exponent n with two generators is given by the
presentation

ha; bjun = 1i ;
for all words u in the alphabet a; b: The fundamental group of the orientable surface
of genus n is given by the presentation

ha1; b1; � � � ; an; bnj [a1; b1] � � � ; [an; bn] = 1i :

2. Geometric Group theory

The object of study in Geometric Group Theory �nitely generated groups given
by presentations

ha1; � � � ; anjr1; r2; � � � i ;
where ri is a word in a1; � � � ; an: That is groups generated by a1; � � � ; an with
relations r1 = 1; r2 = 1; � � � imposed. Some classical results

Theorem 20. (Boone-Novikov�s solution of Dehn�s problem) There exists a
�nite presented group with undecidable word problem.

Theorem 21. (Higman) A group has recursively enumerable (= we can enu-
merate all the words) word problem i¤ it is a subgroup of a �nitely presented group.

Theorem 22. (Adian- Novikov�s solution of Burnside problem) The free Burn-
side group of exponent n with at least two generators is in�nite for large enough
odd n:

It is still unknown if such a group is in�nite for n = 5; 8 etc.
The growth rate of a group is a well de�ned notion from asymtotic analysis.

To say that a �nitely generated group has polynomial growth means the number
of elements of length (relative to a symmetric generating set) at most n is bounded
above by a polynomial function p (n) : The order of growth is then the least degree
of any such polynomial function p:

Definition 26. A nilpotent group G is a group with a lower central series
terminating in the identity subgroup.

Theorem 23. (Gromov�s solution of Milnor�s problem) Any group polynomial
growth has a nilpotent subgroup of �nite index.

(Converse) If the group has a nilpotent subgroup of �nite index then it has
polynomial growth.
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Definition 27. A group G acts on a set X if for each g 2 G there is a bijection
x! gx de�ned on X such that

ex = x; (g1 (g2 (x))) = (g1g2) (x) :

Definition 28. f is an isometry if there exist a map,

f : Y ! X;

and

jf (y1) ; f (y2)jX = jy1; y2j ; (8y1; y2 2 Y ) :

Example 30. G acts on itself from the left by isometry,��g�11 g2
�� =

��gg�11 gg2
��

=
��g�11 g�1gg2

�� :
3. Finitely generated groups viewed as metric spaces

Let G be a group given as a quotient

� : F (S)! G;

of the free group on a set S: Therefore G = hSjRi : The word length jgj of an
element g 2 G is the smallest integer n for which there exists a sequence s1: � � � sn
of elements in S [ S�1 such that

g = � (s1: � � � sn) :

The word metric dS (g1; g1) is de�ned on G by

dS (g1; g2) =
��g�11 g2

�� :
G acts on itself from the left by isometries.

Definition 29. (Cayley graph) Note, that if S and S are two �nite generating
sets of G then dS and dS are bi-Lipschitz equivalent, namely 9 C 8 g1; g2 2 G;

1

C
dS (g1; g2) � dS (g1; g2) � C dS (g1; g2) :

Definition 30. (Polynomial growth) A ball of radius n is Cay (G;S) is

Bn = fg 2 Gj jgj � ng :

Definition 31. A group G has polynomial growth i¤ the number of elements
in Bn is bounded by a polynomial p (n) :

4. Hyperbolic groups

Definition 32. A geodesic metric space is called ��hyperbolic if for every
geodesic triangle, each edge is contained in the � neighborhood of the union of the
other two edges.

Definition 33. If � = 0 the space is called a real tree, or R� tree.
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Example 31. A group G is hyperbolic Cay (G;X) is hyperbolic (= It looks like
a tree)

Example 32. Geodesic triangles are ��thin hyperbolic.

Example 33. F (S) is hyperbolic so is a 0� hyperbolic, so � = 0:

5. Quasi-isometry

Definition 34. Let (X; dX) and (Y; dY ) be metrics spaces. Given real numbers
k � 1 and C � 0; a map

f : X ! Y;

is called a (k;C)� quasi-isometry if
(1) 1

kdX (x1; x2)� C � dY (f (x1) ; f (x2)) � kdX (x1; x2) + C; 8x1; x2 2 X:
(2) the C neighborhood of f (X) is all of Y:

Examples of quasi-isometries
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Example 34. (R; d) and (Z; d) are quasi-isometric. The natural embedding of
Z in R is isometry. It is not surjective, but each point of R is at most 12 away from
Z:

R is at most 12 away from Z:

Example 35. All regular trees of valence at least 3 are quasi-isometric. We
denote by Tk the regular tree of valence k and we show that T3 is quasi-isometric
to Tk for every k � 4: We de�ne that map

q : T3 ! Tk;

sending all edges drawn in thin lines isometrically onto edges and all paths of length
k � 3 drawn in thick lines onto one vertex. The map q thus de�ned is surjective
and it satis�es the inequality

1

k � 2dist (x; y)� 1 � dist (q (x) ; q (y)) � dist (x; y) :

Free groups of di¤erent rank are quasi- isometric

Example 36. All non-Abelian free groups of �nite rank are quasi-isometric to
each other. The Cayley graph of the free group or rank n with respect to a set of n
generators and their inverses is the regular simplicial tree valence 2n:

Example 37. Let G be a group with a �nite generating set S, and let Cay (G;S)
be the corresponding Cayley graph. We can make Cay (G;S) into a metric space
by identifying each edge with a unit interval [0; 1] in R and de�ning d (x; y) to
be the length of the shortest path joining x; and y: This coincides with the path
length metric when x and y are vertices. Since every point of Cay (G;S) is in the
1
2�neighborhood of some vertex, we see that G and Cay (G;S) are quasi-isometric
for this choice of d:

Example 38. Every bounded metric space is quasi-isometric to a point.
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Example 39. If S and T are �nite generating sets for a group G; then (G; dS)
and (G; dT ) are quasi-isometric.

Example 40. The main example, which partly justi�es the interest in quasi-
isometries, is the following. Given M a compact Riemannian manifold, let fM be
its universal covering and let �1 (M) be its fundamental group. The group �1 (M)
is �nitely generated, in fact even �nitely presented. The metric space fM with the
Riemannian metric is quasi-isometric to �1 (M) with some word metric.

Example 41. If G1 is a �nite index subgroup of G, then G and G1 are quasi-
isometrically equivalent.

6. Quasi-isometries Rigidity

We consider the question of Gromov: Characterize all classes of groups K
complete with respect to quasi-isometries (every group quasi-isometric to a group
from K has a �nite index subgroup in K). The following list give us groups which
are in the rigid class.

(1) Finitely presented groups,
(2) Nilpotent groups,
(3) Abelian groups,
(4) Hyperbolic groups,
(5) nonabelian free groups of �nite rank (follows from the fact that their

Cayley graphs are trees).
(6) Amenable group (see below).

Remark 13. Solvable groups �= quasi-isometric groups.

Example 42.

Sol :=

8<:
0@ e

z
2 x 0
0 1 0
0 y e�

z
2

1A : (x; y; z) 2 R3
9=; :

(Eskin, Fisher, Whyte) obtained �rst results on quasi-isometric rigidity of non-
nilpotent polycyclic groups.

Definition 35. A group G is polycyclic if we have

G D G1 D G2 � � � D Gk = f1g ;
where Gi

GI+1
are cyclic i = 0; � � � ; k � 1:

Remark 14. Polycyclic groups are close to hyperbolic groups.

Theorem 24. Any group quasi-isometric to the three dimensional solvable Lie
group Sol is virtually a lattice in Sol.

That completed the classi�cation of three dimensional manifolds up to quasi-
isometry started by Thusston, Schwartz and other.

Conjecture

Let G be a solvable Lie group, and � a lattice in G: Any �nitely generated group
�
0
quais-isometric to � is virtually a lattice in a solvable Lie group G

0
:

Equivalently, any �nitely generate group quasi-isometric to a polycyclic group
is virtually polycyclic.
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7. Limit groups (fully residually free groups)

Definition 36. A marked group (G;S) is a group G with a prescribed family
of generators S = (s1; � � � ; sn) :

Two marked groups (G; (s1; � � � ; sn)) and
�
G

0
;
�
s
0

1; � � � ; s
0

n

��
are isomorphic as

marked groups if the bijection
si  ! s

0

i

extends to an isomorphism.

Example 43. (hai ; (1; a)) and (hai ; (a; 1)) are not isomorphic as marked groups.
Denote Gn the set of groups marked by n elements up to isomorphism of marked

groups. One can de�ne a metric on Gn by setting

(z�) dist
�
(G;S) ;

�
G

0
; S

0
��
= e�N :

the distance between two marked groups (G;S) ; and
�
G

0
; S

0
�
to be e�N if they

have exactly the same relations of length at most N (under the bijection S  !
S
0
)(Grigorchuk, Gromov�s metric).

Definition 37. A limit group is a limit (with respect to the metric above) of
marked free groups in Gn:

Remark 15. We see that (z�) is a metric:
(1) If G �= G

0
this

dist
�
(G;S) ;

�
G;S

0
��
= 0:

(2) Symmetric,

dist
�
(G;S) ;

�
G

0
; S

0
��
= e�N = dist

��
G

0
; S

0
�
; (G;S)

�
:

(3) Triangle inequality,

dist
�
(G;S) ;

�
G

0
; S

0
��

� dist
�
(G;S) ;

�
G

00

; S
00��

+ dist
��
G

00
; S

00
�
;
�
G

0
; S

0
��

=
e�N

2
+
e�N

2
= e�N ::

Therefore it is a metric.

Example 44. A free Abelian group of rank 2 is a limit of a sequence of cyclic
groups with marking

(hai ; (a; an)) ; n!1:
this is �

hai ;
�
a
=x
; an
=y

��
;

y = xn;

and �
hai ;

�
a
=x
; am
=y

��
;

y = xm:

The relation is given by [x; y] = 1:
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Theorem 25. Let G be a �nitely generated group. Then the following condi-
tions are equivalent:

(1) G is fully residually free (that is for �nitely many non-trivial elements
g1; � � � gn 2 G there exists a homomorphism � from G to a free group such
that � (gi) 6= 1 for i = 1; � � � ; n).

(2) (Champetier and Guirardel)G is a limit of free groups in Gromov-Grigorchuk
metric.

(3) (Remeslennikov) G is universally equivalent to F (in the language without
constants).

Remark 16. The property (3) implies that G is a limit of free groups.

Remark 17. Fully residually free=Residually �nite.

Remark 18. Fully residually free6= Residually free.

Example 45. To see that Fully residually free 6= Residually free, consider F�F
is residually free but not fully residually free.

Example 46. Universal sentence that is true in F; 8x; y; z

([x; y] = 1 and [x; z] = 1 and x 6= y ! [y; z] = 1) :

8. Free actions on metric spaces

Theorem 26. A group G is free i¤ it acts freely by isometries or by automor-
phism on a tree.

Free action= no inversion of edges and stabilizers of vertices are trivial

Example 47.
��g�11 g2

�� = ���(gg1)�1 (gg2)��� :
Definition 38. Stabilizers of vertices: If G acts on a set V; v 2 V: Gv =

fg 2 Gjgv = vg is the stabilizer of v:

Example 48. Every free group acts trivially on a Cayley graph.

9. R� Trees

Definition 39. A R� tree is a metric space (X; �) where

� : X �X ! R;

which satis�es the following properties:

(1) (X; �) is geodesic,
(2) if two segments of (X; �) intersect in a single point, which is an endpoint

of both, then their union is a segment,
(3) the intersection of two segments with a common endpoint is also a seg-

ment.

Remark 19. An R� tree or 0�hyperbolic metric space, no triangle just tripods.
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Example 49. of property (2)

Example 50. Consider X = R with usual metric.

Example 51. A geometric realization of a simplicial tree.

Example 52. Consider X = R2 with metric d de�ned by

d ((x1; y1) ; (x2; y2)) =

�
jy1j+ jy2j+ jx1 � x2j ; if x1 6= x2;

jy1 � y2j ; if x1 = x2:

�

Example 53. To consider the property (2) for the �gure above we just add
lines as the �gure shows:
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Example 54. Consider X = R2 with SNCF metric (French Railway System).

dp (x; y) : =

8<: kx� ykL2 ; if x and y lie on the same rayfrom the origin,
kxkL2 + kykL2 ; otherwise.

9=;

unique geodesic

10. Finitely generated R� free groups

Theorem 27. (Rips�, 1991 not published) A �nitely generated group is R� free
(acts freely on an R�tree by isometries) i¤ it is a free product of surface groups
(except for the non-orientable surfaces of genus 1,2,3) and free Abelian groups of
�nite rank.

Remark 20. Gaboriau, Levitt, Paulin (1994) gave a complete proof of Rips�
theorem.

Remark 21. Bestvina, Feighn (1995) gave another proof of Rips�theorem prov-
ing a more general result for stable actions on R� trees.

11. Bass-Serre

Definition 40. Free product with amalgamation. Let G be a free product

G = A �
u=v

B;

(free product of A and B amalgamated over u = v). If U � A; V � B consider

' : U !�= V;

G =

�
gen. of A; gen. of Bj Rel: of A

Rel: of B
8u 2 U; ' (u) = u

�
:

Definition 41. G = A�
u
is HNN extension if ' (U) � A is an isometry.

G =
D
gen. of A; t

stable letter
jRel: of A; ' (u) = tut�1;8u 2 U

E
:
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Example 55. Consider G = B (2; 3) is a HNN extension generated by a cyclic
group this is

A = hai ; t = b

U =


a2
�
;

V =


a3
�
;

' : a2 ! a3:

Remark 22. B (2; 3) =


a; bjba2b�1 = a3

�
is non Hop�an. This is there exist

an epimorphism

� : a! a2;

� : b! b;

with nontrivial kernel. This is
�
bab�1; a3

�
2 ker �: To see this we have�

bab�1; a3
�
= bab�1a3

�
bab�1

��1 �
a3
��1

= bab�1
�
ba2b�1

� �
bab�1

��1 �
ba2b�1

��1
= ba3a�1a�2b�1 = 1:

De�nition (40) and (41) both are called splittings of G:

Definition 42. A directed graph consists of a set of vertices V (X) and a set
of edges E (X) together with two functions

� : E (X)! V (X) ;

� : E (X)! V (X) :

For an edge e 2 E (X) the vertices � (e) and � (e) are called the origin and the
terminus of e:

Definition 43. A non-oriented graph is a directed graph X with involution

� : E (X)! E (X) ;

which satis�es the following conditions:
(1) e = e;
(2) e 6= e;
(3) � (e) = � (e) :

We refer to a pair fe; eg as a non-oriented edge.

Definition 44. A path p in a graph X is a sequence if edges e1; � � � ; en such
that � (ei) = � (ei+1) ; i 2 f1; � � � ; n� 1g : Put � (p) = � (e1) ; � (p) = � (en) :

Definition 45. A path p = e1; � � � ; en is reduced if ei+1 6= ei for each i:

Definition 46. A path p is closed (or a loop) if � (p) = � (p) :

Let X and Y be graphs. A morphism of graphs

� : X ! Y;

consists of two maps

�V : V (X)! V (Y ) ;

�E : E (X)! E (Y ) ;
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such that

�V (� (e)) = ��E (e) ;

�V (� (e)) = ��E (e) ;

�V (e) = �E (e):

We say that a graph X is a subgraph of a graph Y if

V (X) � V (Y ) ; E (X) � E (Y ) ;

and the inclusion maps

V (X) ,! V (Y ) ; E (X) ,! E (Y ) ;

form a morphism of graphs

X ! Y:

Definition 47. A graph of groups � (G; X) consists of
(1) a connected graph X;
(2) a function G which for every vertex v 2 V (X) assigns a group Gv; and

for each edge e 2 E (X) assigns a group Ge such that

Ge = Ge:

(3) For each edge e 2 E (X) there exists a monomorphism

� : Ge ! G�e:

Let � (G; X) be a graph of groups. Since

Ge = Ge:

then there exists a monomorphism

� : Ge ! G�e = G�e:

which we denote by

� : Ge ! G�e:

Let � = � (G; X) be a graph of groups, and let T be a maximal subtree of
X: Suppose the groups Gv are given by presentations Gv = hXvjRvi ; v 2 V (X) :
We de�ne a fundamental group � (�) of the graph of groups � by generators and
relations:

� Generators of � (�) :[
v2V (X)

Xv

[
fteje 2 E (X)g :

� Relations of � (�) :[
v2V (X)

Rv
[�

t�1e �gte = �gjg 2 Ge; e 2 E (X)
	
[
�
te = t�1e je 2 E (X)

	
[fte = 1je 2 Tg :

We assume here that � (g) and � (g) are words in generators X�e and X�e;
correspondingly.
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Example 56. Let � be

then

� (�) = Gu �
Ge

Gv;

free product with amalgamation.

Example 57. Consider

Ge ,! A;

Ge (U) = B:

� (�) = G:

Example 58. If � is

then

� (�) = Gv �
Ge

-HNN extension of Gv: Were we have

Gv = A;

�Ge = U;

�Ge = V:
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Example 59. Think of the following graph

where the maximum subtree is in red. Amalgamation of the product along the max-
imum subtree is HNN=� (�) :

Example 60. Consider the following graph

we have generators of Gv1 and Gv2 . Now the relators are �g = �g; 8g 2 Ge1 . Then

H = Gv1 �
Ge1

Gv2 :

K = H�(Ge) �
� (�) = K:

Example 61. If � is

then � (�) is called a tree product.
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Example 62. If � is

then � (�) is a generalized HNN extension.

Exercise 9. Prove that if G1 is a �nite index subgroup of G, then G and G1
are quasi-isometrically equivalent.





CHAPTER 5

Chapter 5

Remark 23. Bass- Serre was to understand the structure of group SL2 (K) :
When K is a �eld, Serre wanted to split K. Suppose SL2 (K) acts on a tree then
SL2 (K) split.

1. Amalgamated free products

Definition 48. Let A;B;C be groups and let

� : C ! A; and

� : C ! B;

be injective homomorphisms. If the diagram below is a push out then we write

G = A �
C
B

and we say that G is the amalgamated (free) product of A and B over C:

C
�! A

� # 	 #
B ! G

Example 63. F (a; b) � F (c; d) = ha; b; c; dj [ab] [dc] = 1i = S2: There is no
relations. Let [a; b] = [c; d] ; then S2 is an orientable surface of genus 2.

�c = h[a; b]i ;
�c = h[c; d]i ;
c = hci ;
�c = [a; b] ;

�c = [c; d] :

63
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If G is a group, then there exists a connected CW-complex K (G; 1) (the
Eilenberg-MacLane space) such that �1 (K (G; 1)) �= G: For A;B;C; �; � as above,
let X = K (A; 1) ; Y = K (B; 1) ; Z = K (C; ; 1) be three spaces and realize � and
� as maps

�+ : Z ! X;

�� : Z ! Y:

Now let
W = X

G
(Z � [�1; 1])

G
Y \ =~;

W = X
G
(Z � [�1; 1])

G
Y \ =~

where (z;�1) ~��1 (z) : By the Seifert-Van Kampen theorem,
�1 (W ) �= A �

C
B:

Suppose that A = hS1jR1i ; B = hS2jR2i ; then

A �
C
B =

D
S1
G
S2jR1; R2; f� (c) = � (c) ; c 2 Cg

E
:

Example 64. Let � be a connected surface and let  be a separating, simple
closed curve. Let � = ��

G
�+: Then

�1 (�) �= �1 (��) �
hi

�1 (�+) :

If  is non-separating (but still 2-sided), then there are two natural maps

��1 : S1 ! ��;

representing ; where �� = �� im () :

Example 65. The HNN extension of �� = �� im () is:
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Let G = �1 (X;�) ; be the fundamental group of the graph of groups, with
Gv; Ge and with subgroups

� (Ge) � G�(e);

� (Ge) � G�(e):

Consider

X =
a

Xv

G
[ (Xe � [�1; 1]) ;

identify

(Xe � f�1g) ! �� (Xe) ;

where �� is the embedding that realized �: The same holds for

(Xe � f1g) ! �� (Xe) ;

where �� is the embedding that realized � : This is called graphs of spaces. This
de�nition does not depends on the tree. We just construct this space with out the
assumption that groups act on trees. Let G = hA �Bjc = � (c) ; c 2 Ci : Choose a
system of right coset representatives TC and TD; where D = � (C) :

Definition 49. A C� normal form is a sequence (x�; x1; � � � ; xn) such that
(1) x� 2 C;
(2) xi 2 TC � f1g or xi 2 TD � f1g ; and the consecutive terms xi and xi+1

lie in distinct systems of representatives. Similarly one can de�ne a D�
normal form.

Theorem 28. Any element g 2 G = A �
C=D

B can be uniquely written in the

form g = x�x1 � � �xn; where (x�; x1; � � � ; xn) is a C� normal form.

Proof. Let g 2 G: If g 2 C; then g = x� which is a normal form.

(1.1) g = a1b1 � � � akbk =2 C;

and ai; bi =2 C;D; for i 6= 1: Where b can be represented as b = ebb; b 2 TB andeb 2 D and eb 2 ��1 (ea) ;ea 2 C and ea = eb: Then
g = a1b1 � � � ak

�ebb�
k

= a1b1 � � � ak ebk|{z}
a
0
k

bk

= a1b1 � � � a
0

kbk:

By induction suppose that we have (1:1) � we can apply induction to g = a1b1 � � � a
0

kbk:
Therefore

a1b1 � � � a
0

kbk;

is a normal form.
(Uniqueness). We make G act on the setWC of C� normal form (or D�normal

form). First A acts on WC ; let � 2WC : If � 2 C then let � = x�; so that

g� = gx� 2 C; if g 2 C;
g� = gfx�gx�; if g =2 C



66 5. CHAPTER 5

where gx� is the right coset representative. If � =2 C; then

g� =

8>><>>:
(gx�; x1; � � � ; xn) ; if g 2 C;

(gfx�gx�; x1; � � � ; xn) ; if x1 2 B; g =2 C;�
g]x�x1gx�x1; x2; � � � ; xn

�
; if x1 2 A, and gx�x1 =2 C

(gx�x1; x2; � � � ; xn) ; if x1 2 A; gx�x1 2 C:

9>>=>>;
Similarly, B acts on WD: Let

 : WC !WD; �
 (x�; x1; � � � ; xn) = (� (x�) ; x1; � � � ; xn)

b (�) =  �1 (b (�)) :

Free products acts also on normal forms. Extends the action of A, B on WC to
A�B: Check that c (� (c))�1 2 Ker ( of the action) : Then A �

C
B acts on WC : Take

g 2 G
g (1) = x�x1 � � �xn:

Therefore, 9 a unique normal form. �

This graph is called a segment

Theorem 29. Let G1 �
A
G2: Then there exist a tree X; on which G acts without

inversion on edges such that the factor graph GnX; (=graph of orbits or vertices
of the trees X) is a segment. Moreover this segment can be lifted to a segment in
X with the property that the stabilizers in G of its vertices and edges are equal to
G1; G2 and A respectively.

Proof. Let X� = G
G1
[ G
G2
, (union of left cosets) and X1

+ =
G
A : Put � (gA) =

gG1; � (gA) = gG2; and let eT be the segment in X with the vertices G1; G2 and
the positively oriented edge A: G acts on X by left multiplication.

X is connected. Indeed, let g = g1 � � � gn with gi 2 G1 or gi 2 G2 (alternating
product) depending on the parity of i: Then gG1 is connected by a path to G1: If
gi 2 G1; then

g1 � � � gi�1G1 = g1 � � � giG1;
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if gi 2 G2; then g1 � � � gi�1G1 and g1 � � � giG1 are connected by the edges to g1 � � � gi�1G2 =
g1 � � � giG2: Now, the connectivity follows by induction on n:

Suppose there is a reduced loop e1 � � � en: With out lost of generality

� (e1) = G1:

Since adjacent vertices are cosets of di¤erent subgroups, n is even and there exists
xi 2 G1 �A; yi 2 G2 �A such that

� (e2) = x1G2;

� (e3) = x1y1G1; � � � ; � (en) = x1y1 � � �xn
2
yn
2
G1:

Since
� (en) = � (e1) = G1;

this contradicts uniqueness of normal form. Also we have no loops because the
vertices are alternating.

We have that g1 � � � gn are left coset representatives of A in G1 di¤erent edges are
the di¤erent cosets so we obtain the tree. The quotient is the segment. �

Remark 24. In X; all edges with initial vertex gG1 have the form gg1A; where
g1 runs over the set of representatives of the left cosets of A in G1: The degree of
gG1 is jG1 : Aj : The stabilizer of gG1 is gG1g�1:

For the converse of the above theorem if we have a group that acts on trees.

Theorem 30. Let G act without inversions on edges on a tree X and suppose
that the factor graph GnX is a segment. Let eT be an arbitrary lift of this segment
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in X. Denote its vertices by P; Q; and the edge by e; and let Gp; Gq; Ge be their
stabilizers. Then the homomorphism

� : GP �
Ge

GQ ! G;

which is the identity on GP and GQ is an isomorphism.

Proof. Write G
0
= hGp; Gqi and prove that G = G

0
: If G

0
< G then the

graph G
0 eT and �G�G0

� eT are disjoint: Suppose g0 2 G0
and g 2

�
G�G0

�
and

suppose they are not disjoint. Let gGp = g
0
Gp this cannot be since this implies

that g 2 g0Gp � G
0
; but g 2

�
G�G0

�
=)(= : Also gGP = g

0
GQ cannot happen

since P and Q are di¤erent orbits. Then G
0 eT and �G�G0

� eT are disjoint.
But G eT = X is connected, which is a contradiction.
Injection of �: Let eG = GP �

Ge

GQ and let eX be the tree constructed from eG as
in the proof of the previous theorem (29). De�ne a morphism

 : eX ! X; by

gGr ! � (g) r;

where r 2 fP;Q; eg : It is surjective because X = G eT and G = hGP ; GQi ; and is
locally injective morphism from a tree to a tree, therefore injective. Let g 2 eG�GP :
Then the vertices GP and gGP of the tree eX are distinct, therefore vertices P and
� (g)P of the tree X are also distinct. Hence � (g) 6= 1: Where

� : GP �
Ge

GQ ! G;

�

2. Action of SL2 (Z) on the hyperbolic plane

H2 = fz 2 Cjim (z) > 0g .

Definition 50. A hyperbolic line is an open half circle or an open half line (in
the Euclidean sense) in H2 such that its closure meets the real axis at right angles.

Definition 51. A Möbius transformation of H2 is a map

z ! az + b

cz + d
;

where a; b; c; d 2 R; ad� bc = 1:

SL2 (R) acts on H2 by the rule�
a b
c d

�
: z ! az + b

cz + d
;

The kernel is f�1g :

Let

M =

�
zj1 < jzj ;�1

2
< Re (z) � 1

2

�
[
n
ei�j�

3
� � � �

2

o
:

Theorem 31. The setM is the fundamental domain for the action of PL2 (Z)
on H2 .
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3. Action of SL2 (Z) on a tree

Theorem 32. The union of the images of the arc

T =
n
ei�j�

3
� � � �

2

o
;

under the action of the group SL2 (Z) is a tree. SL2 (Z) acts on this tree without
inversion on edges and so that distinct points of the arc are in equivalent. The
stabilizers of endpoints are generated by the matrices

A =

�
0 1
�1 0

�
;

and

B =

�
0 1
�1 1

�
;

of orders 4 and 6: The stabilizer of the arc is generated by

�I =
�
�1 0
0 �1

�
;

of order 2: In particular
SL2 (Z) �= Z4 �

Z2
Z6:

Example 66. Let C =

�
0 1
1 0

�
: Then hA;Ci �= D4; hB;Ci �= D6. Then

GL2 (Z) �= D4 �
D2

D6:

Theorem 33. [Serre] For n � 3 the groups SL2 (Z) and GL2 (Z) cannot be
represented as nontrivial amalgamated products. (They do not act on trees).

4. Trees and HNN extensions

Let G =


H; tjt�1at = � (a) ; a 2 A;� (A) = B

�
:

Definition 52. A normal form is a sequence (g�; t�1 ; g1; � � � ; t�n ; gn) such that
(1) g� is an arbitrary element of H;
(2) if �i = �1; then gi 2 TA (right coset representative),
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(3) if �i = 1; then gi 2 TB ;
(4) there is no consecutive subsequence t�; 1; t��:

Remark 25. at = tb; tgi 2 TB and g 2 B: Similarly bt = t�1a:

Theorem 34. (Britton�s Lemma):

(1) Every element x 2 G has a unique representation

x = g�t
�1g1 � � � t�ngn;

where (g�; t�1 ; g1; � � � ; t�n ; gn) is a normal form.
(2) H is embedded into G by the map h! h: If w = g�t

�1g1 � � � t�ngn, and this
expression does not contain subwords t�1git with gi 2 A or tgit�1 with
gi 2 B; then w 6= 1 in G:

Example 67. Consider the Van-Kampen diagram for G = hXjRi labeled planar
graphs. Simple loops are labeled by relations. We can read a word w on the contour
(boundary) of the diagrams. Reduced cycled reduced w = 1 in G i¤ 9 a diagram
with boundary.

Example 68. Consider the extension of HNN of
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The Van-Kampen looks like,

Theorem 35. Let G =


H; tjt�1at = � (a) ; a 2 A;� (A) = B

�
: Then there ex-

ist a tree X on which G acts without inversion of edges such that the factor graph
GnX is a loop. Moreover, there is a segment eY in X such that the stabilizers of its
vertices and edges in the group G are equal to H; tHt�1 and A respectively.

Proof. Set X� = G
H ; X

1
+ = G

A (all cosets are left), � (gA) = gH; � (gA) =

gtH; and let eY be the segment in X with vertices H; tH: G acts on X by left
multiplication. This implies that there is uniqueness of normal form. �

Theorem 36. Let G act without inversions on edges on a tree X and suppose
that the factor graph Y = GnX is a loop. Let eY be an arbitrary segment in X:
Denote its vertices by P;Q; and the edge by e; and let Gp; Gq; Ge = G�e be their
stabilizers. Let x be an arbitrary element such that Q = xP: Put G

0

e = x�1Gex and
let

� : Ge ! G
0

e;

be the isomorphism induced by conjugation by x: Then G
0

e � GP and the homomor-
phism 


GP ; tjt�1at = � (a) ; a 2 Ge
�
! G;

which is the identity on GP and sends t to x is an isomorphism.

Proof. Sketch of proof:
Because all vertices are the same order we have,

Q = xP; GQ = xGP ;

Ge � GP ; Ge � GQ; so
Ge � xGPx

�1 and x�1Gex � GP :
�

Definition 53. A graph of groups � (G; X) consists of
(1) a connected graph X;
(2) a function G which for every vertex v 2 V (X) assigns a group Gv; and

for each edge e 2 E (X) assigns a group Ge such that
Ge = Ge:
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(3) For each edge e 2 E (X) there exists a monomorphism
� : Ge ! G�e:

Let � (G; X) be a graph of groups. Since
Ge = Ge:

then there exists a monomorphism

� : Ge ! G�e = G�e:

which we denote by
� : Ge ! G�e:

Let � = � (G; X) be a graph of groups, and let T be a maximal subtree of
X: Suppose the groups Gv are given by presentations Gv = hXvjRvi ; v 2 V (X) :
We de�ne a fundamental group � (�) of the graph of groups � by generators and
relations:

� Generators of � (�) :[
v2V (X)

Xv

[
fteje 2 E (X)g :

� Relations of � (�) :[
v2V (X)

Rv
[�

t�1e �gte = �gjg 2 Ge; e 2 E (X)
	
[
�
te = t�1e je 2 E (X)

	
[fte = 1je 2 Tg :

We assume here that � (g) and � (g) are words in generators X�e and X�e;
correspondingly.

Example 69. Let � be

then
� (�) = Gu �

Ge

Gv;

free product with amalgamation.

Example 70. If � is

then
� (�) = Gv �

Ge
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-HNN extension of Gv: Were we have

Gv = A;

�Ge = U;

�Ge = V:

Example 71. If � is

then � (�) is called a tree product.

Example 72. If � is

then � (�) is a generalized HNN extension.

Let � (�jY ; S) be the fundamental group of a graph. Let S be a maximal
subtree of Y; and T a max subtree of X:



74 5. CHAPTER 5

Let � = (G;X) be a graph of groups and Y � X be a connected subgraph.
Then one can de�ne a subgraph of groups

�jY = (GY ; Y ) ;
where GY = GjY is the restriction of G on Y; i.e., every vertex and every edge
from Y has the same associated groups as in �: Every maximal subtree S of Y can
be extended to a maximal subtree T of X with S � T: The identical map�

gv 2 Gv ! gv 2 Gv; (v 2 Y )
te ! te; (e 2 Y ) ;

�
gives rise to a homomorphism of the free product

�� : �
v2V (Y )

Gv � F (E (Y ))! � (�; T ) ;

where F (E (Y )) is a free group with basis E (Y ) : Clearly, �� sends all de�ning
relations of � (�jY ; S) into identity. Hence it induces a homomorphism

�Y : � (�jY ; S)! � (�; T ) :

We call �Y the canonical homomorphism.

Theorem 37. The canonical homomorphism

�Y : � (�jY ; S)! � (�; T ) :

is a monomorphism.

Proof.

So we have a connected graph. Amalgamated product Y embeds into a group. Now
we can add and edge and extend the amalgamated product to the blue graph, and
we repeat this process. Then we do induction on the number of edges.
Case 1 Let X be a �nite tree, so S � T = X: If S = T then there is nothing to
prove. If S 6= T then there exists an edge e 2 T and a subtree T1 of T such that
T = T1 [ feg and S � T1: By induction on jV (T )j the canonical homomorphism

�1 : � (�jS ; S)! � (�jT1 ; T1) ;
is a monomorphism. Observe that also by induction we have canonical monomor-
phism

G�(e)
��(e)
,! � (�jS ; S)

�
,! � (�jT1 ; T1) :
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In particular

Ge
�
,! G�(e)

��(e)
,! � (�jT1 ; T1) ;

Ge
�
,! G�(e);

are monomorphism. This shows that the representation of � (�jT ; T ) via generators
and relations is a presentation of a free product with amalgamation:

� (�jT ; T ) = � (�jT1 ; T1) �
Ge

G�(e):

Hence

� (�jT1 ; T1)
�T1
,! � (�jT ; T ) ;

is a monomorphism as well as

� (�jS ; S)
�
,! � (�jT1 ; T1)

�T1
,! � (�jT ; T ) ;

as required.
Case 2 Suppose now that T is an in�nite tree and S is �nite. Then there

exists an increasing chain of �nite trees

S = T� � T1 � � � � � Ti � � � �
such that

T = [Ti:
Then the canonical monomorphism

� (�jT� ; T�) ,! � (�jT1 ; T1) ,! � � � ;
provided an increasing chain of groups. Clearly,

� (�; T ) = lim
i!1

� (�jTi ; Ti) 1

and for each i there exists an embedding

� (�jTi ; Ti) ,! � (�; T ) :

In particular,
� (�jS ; S) ,! � (�; T ) :

Case 3 Let S � T be in�nite trees. Then
� (�jS ; S) = lim

i!1
� (�jSi ; Si) ;

for some in�nite chain of �nite subtrees

S1 � S2 � � � � � Sn � � � � ;
such that S =

[
i

Si: By case 2

�SI : � (�jSi ; Si) ,! � (�; T ) ;

is a monomorphism for each i: Therefore, the canonical homomorphism

� (�jS ; S) = lim
i!1

� (�jSi ; Si) ,! � (�; T ) ;

is a monomorphism.

1Notice that direct limit hare is just a union of the increasing chain of groups.
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Case 4 Let X be an arbitrary graph and X � T be �nite. Then � (�; T ), is
an HNN extension of � (�jT ; T ) (see example 72 above). Case 3 implies that

� (�jS ; S)
�
,! � (�jT ; T )

�T
,! � (�; T ) ;

is a monomorphism. It follows from the properties of HNN extensions that the
canonical map

� (�jT ; T )
�T
,! �

�
�jT[(Y�S); T

�
;

is a monomorphism.
Case 5 Let now X be an arbitrary graph. Then X =

[
i

Xi such that T � Xi

and Xi � T is �nite for every i: Then
� (�; T ) = lim

i!1
� (�jXi ; T ) ;

by Case 4,

� (�jY \Xi ; S)
�Y\Xi
,! � (�jXi ; T ) ;

is monic, as well as

� (�jY ; S) = lim
i!1

� (�jY \Xi ; S) ,! lim
i!1

� (�jXi ; T ) = � (�; T )

�

5. Exercises

Exercise 10. (Britton�s Lemma):

Theorem 38. (1) Every element x 2 G has a unique representation

x = g�t
�1g1 � � � t�ngn;

where (g�; t�1 ; g1; � � � ; t�n ; gn) is a normal form.
(2) H is embedded into G by the map h! h: If w = g�t

�1g1 � � � t�ngn, and this
expression does not contain subwords t�1git with gi 2 A or tgit�1 with
gi 2 B; then w 6= 1 in G:

Exercise 11. Let

A =

�
0 1
�1 0

�
;

and

B =

�
0 1
�1 1

�
;

of orders 4 and 6: Let

C =

�
0 1
1 0

�
The stabilizer of the arc is generated by

�I =
�
�1 0
0 �1

�
;

of order 2: Prove that hA;Ci �= D4; hB;Ci �= D6. Deduce that GL2 (Z) �= D4 �
D2

D6:
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Example 73. Consider G = A�B, where A =


aja3 = 1

�
and B =



bjb4 = 1

�
;

construct a Bass-Serre tree

where b2a2B = b2a2bB; this is

� (gE) = gA;

� (gE) = gB:

Example 74. Consider G =


a; btjb�1a2b2t = a3b3

�
and G = At� we con-

structed a HNN extension of G: Let C =


a2b2

�
; and D =



a3b3

�
; where the

order

jCj = 1;
jDj = 1:

77
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Then the index of
�
A :


a2b2

��
=1:

Which is an in�nite tree, the degree is in�nite since both groups have in�nite order.

� (ta1tC) = ta1tA;

� (gE) = gtA;

� (ta1tC) = ta1t
2A:

Condition 1. Suppose we have a free product A � B = G: If g 2 G; jgj < 1;
then g is conjugate into A or B:

Proof. (1) Take the normal form x�x1 then if we take the square, i.e.
x�x1x�x1 is also a normal form 6= e:

(2) Suppose the path starts A and ends at A, this is,

g = a1ba1;

g2 = a1b1a2a1b1a2;

by (1) this is a normal form. Unless a1 is the inverse of a2 we have normal
forms for higher power 6= e; this is

g3 = a1b1a2a1b1a2a1b1a2 6= e

by induction on the length we the result follows.
�

Let � = � (G;X) be a graph of groups, and let T be a maximal subtree of X:
Suppose the groups Gv are given by presentations Gv = hXvjRvi ; v 2 V (X) : We
de�ne a fundamental group � (�; T ) of the graph of groups � by generators and
relations:

� Generators of � (�) :[
v2V (X)

gen (Gv)
[
fteje 2 E (X)g :

� Relations of � (�) :[
v2V (X)

gen (Gv)
[�

t�1e �gte = �gjg 2 Ge; e 2 E (X)
	
[
�
te = t�1e je 2 E (X)

	
[fte = 1je 2 Tg :

We assume here that � (g) and � (g) are words in generators X�e and X�e;
correspondingly.
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Now we will construct � (�; T ) in a di¤erent way, which does not depend on a
choice of the tree T:

Proof. Let the free product

G = �
v2V (X)

Gv � F (E (X))

=

* [
v2V (X)

gen (Gv)
[
E (X) j

[
v2V (X)

gen (Gv)

+
:

Put (here by nclG (X) we denote the normal subgroup generated by X):

N = nclG


e�1� (g) e = � (g) ; ee = 1je 2 E (X) ; g 2 Ge

�
;

where we use the following notation F (e1; e1; e2; e2) for e
�1
1 = e1 and denote

F (�) = G
N : If we set

MT = nclF (�) (eN je 2 T ) ;
then

F (�)

MT

�= � (�; T ) :

So it su¢ ces to show that F (�)MT
does not depend on T:

G
#

F (�)
# �

�1 (�; T ) ;

where �1 (�; T ) depends on T:Fix a point v� 2 V (X) and de�ne a subgroup H � G
which consists of all elements of the free product G that can be presented in the
form

g�e1g1e2g2 � � � engn;
where g� 2 Gv� ; gi 2 G�ei ; ei 2 E (X) and e1; � � � ; en is a closed path in X at v�:

Remark 26. H is a subgroup of G:

For a vertex v 2 V (X) denote by pv the unique path in T from v� to v: Let
� : G! H be the homomorphism which is de�ned on free factors of G as follows:�

� (gv) = pvgvp
�1
v ;

� (e) = p�eep
�1
�e ;

�
G

�! H
� #
F (�)
� #

�1 (�; T )

Remark 27. � is a homomorphism.

It su¢ ces to show that � (Rel (Gv)) = 1:
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Remark 28. � is a retract on H; i.e., � (G) = H and �jH = idjH : This is
h 2 H; g (h) = h; then

h = g�e1g1e2g2 � � � engn;
then

pv�g�p
�1
v� pv�e1p

�1
�e1p�e1g1 � � � p

�1
vn pvne1p

�1
�enp�engn;

= g�e1g1e2g2 � � � engn
Denote by � : G! F (�) the canonical epimorphism and put

�1 (�; v�) = � (H) � F (�) :
Clearly, �1 (�; v�) does not depend on T:

G
�! H

� #
�1
& # �H

F (�)
99K
�2 �1 (�; v�)

The composition �1 = �jH � � gives a homomorphism.
Claim 1 �1 (N) = 1: Indeed,

�1 (ee) =
�
p�eep

�1
�e

� �
p�eep

�1
�e

�
= p�eeep

�1
�e

= p�ep
�1
�e = 1:

Similarly,
�1
�
e�1� (g) e�

�
g�1

��
= 1:

Therefore �1 induces a homomorphism

�2 : F (�)! � (�; v�) :

Claim 2 �2 (MT ) = 1: Indeed,

�2 (eN) = � (� (e)) = �
�
p�eep

�1
�e

�
:

If e 2 T then p�eep�1�e = 1 hence �2 (eN) = 1:

p�eep
�1
�e = 1

Therefore �2 induces a homomorphism

�3 :
F (�)

MT
! � (�; v�) ;
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and we have the following commutative diagram where

� : F (�)! F (�)

MT
;

is the canonical epimorphism,

G
�! H

� #
�1
& # �H

F (�) ! �1 (�; V�)
�2

� # %
�3

.
�

�1 (�; T )

On the other hand the restriction � of � on � (�; v�) gives a homomorphism

� : � (�; v�)! � (�; T ) :

We claim that � � �3 = �3 � � = id; i.e. � and �3 are isomorphisms. Indeed, since
pv = e1 � � � en; ei 2 T; and � (� (ei)) = 1 we have the following chain of equalities

�3 (gvMT ) = �2 (gvN) = � (� (gv))

= �
�
pvgvp

�1
v

�
;

�
�
�
�
pvgvp

�1
v

��
= � (� (gv)) :

We have

�3 (eMT ) = �2 (eN) = � (e) = p�eep
�1
�e :

Therefore,

� (�3 (eMT )) = �
�
�
�
p�eep

�1
�e

��
= eMT :

�

1. Graphs of spaces

Let G be a fundamental group of a graph of groups with underlying graph Y:
For each edge or vertex a of Y choose Xa to be a connected CW-complex with
fundamental group Ga: We can do this so that there is an embedding

Xe ,! Xv;

realizing the inclusion of groups. We form the topological space � (X ; Y ) by begin-
ning with the disjoint union a

v2V
Xv

aa
e2E

Xe � I;

and

(1) identifying Xe � I with Xe � I via (x; t) � (x; 1� t) and
(2) gluing Xe�f0g to X�(e) via the given inclusion. The resulting topological

space has fundamental group G:
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Example 75. Consider G = A �
C=D

B; the automorphism, and C is Abelian.

Consider the homomorphism '

' :

8<: a! a; a 2 A

b! cdc�1;
c 2 C
b 2 B

9=;
and c1 = d1 =) c = cd1c

�1 since C is Abelian. Therefore ' is an automorphism

and generalize Dehn twist :=

8<: Cut
Paste
Twist

9=; : The above automorphism corresponds to

the following group:

Lemma 11. Let p : X ! Y be a locally surjective morphism of graphs and T
be a subtree of Y: Then there exists a morphism of graphs j : T ! X � p � j = idT :
In particular, j is injective.

Proof. Consider all the pairs
�
T
0
; j

0
�
with T

0 � T;

j
0
: T

0
! X;

p � j0 = idT 0 : By Zorn�s lemma there exists a maximal pair (T�; j�) with respect
to inclusion. We claim that T� = T: Suppose not then there exists an edge e 2 T
with �e 2 T�; �e =2 T�: Since p is locally surjective there exists e

0 2 V (X) with
pe

0
= e; �e

0
= j�e: Put T

0
= T� [ feg ; j

0
= j [

n�
e; e

0
�o

: Then

j
0
: T

0
! X;

is a graph morphism and p�j0 = idT 0 : But T
0 ) T�, this contradicts the maximality

of T�. �
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Suppose now that G acts on X without inversions,

p : X ! X

G
;

is the canonical projection, and T � X
G is a maximal subtree of XG : By the lemma

(11) above there exists a morphism

j : T ! X;

with
p � j = idT :

In particular, jT is a tree, and
j : T ! jT;

is an isomorphisms of graphs. We call jT a representative tree of the action of G
on X:

Lemma 12. Let G act on X without inversions and

p : X ! X

G
;

be the canonical projection. If Y 1� is an orientation of Y = X
G ; then X

1
+ = p�1Y 1+

is an orientation of X:

Theorem 39. Let G be a group which acts freely (on a set acts faithfully) and
without inversions on a tree X: Then G is free.
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Proof. Let T be a representative tree for the action of G on X: Then

gT \ hT = ?; g 6= h:

Indeed, if for some vertices v; w 2 T we have gv = hw then p (v) = p (w) contra-
dicting the fact that pjT is injective, unless v = w: But gv = hv implies h�1gv = v
and hence h�1g = 1; i.e. h = g: Contradiction.

Observe that every vertex of X belongs to gT for some g 2 G: It follows that
X consists of subgraphs gT; g 2 G; and some other edges. Since X is a tree there
exists at most one edge connecting gT and hT for g 6= h: Denote by Y the graph
which is obtained from X by contacting every subtree gT; g 2 G; to a single vertex
which we denote by gT:Clearly, Y is a tree.

Put

S =
�
g 2 Gjg 6= 19e 2 X1

+ � �e 2 T and �e 2 gT
	
:

We label edges from Y by elements from S� = S [ S�1 as follows. Let e 2 X1
+;

e connects gT to hT: Then the edge g�1e connects T to g�1hT; and g�1e 2 X1
+:

Hence g�1h 2 S: We label the edge e by g�1h; and the edge e by h�1g: How S
generates G: This is G = hSi take a path in S and apply induction on the number
of paths.

Claim. The labeled graph Y is isomorphic to the Cayley graph �
�
G;S�1

�
:

We de�ne a map

� : �
�
G;S�1

�
! Y;

in the following way:

(1) � (g) = gT (vertex); g 2 G:
(2) If (g; s) is an edge in �

�
G;S�1

�
� s 2 S then there exists an edge e0 in Y

connecting T to sT: De�ne

� : (g; s)! ge
0
:

Also, if (g; s) 2 E
�
�
�
G;S�1

��
and s =2 S; then s�1 2 S and we de�ne

� : (g; s)! � (gs; s�1):

It is not hard to check that � is a morphism of graphs. Indeed, if e 2 E
�
�
�
G;S�1

��
and e = (g; s) then �e = g; �e = gs: Now � (e) = ge

0
; where �e

0
= T; �e

0
= sT:
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Hence

�� (e) = �
�
ge

0
�
= g�e

0

= gT = � (�e) ;

�� (e) = �
�
ge

0
�
= g�e

0

= gsT = � (�e) :

It is left to verify that � is bijective on edges. �

Let G be a group acting on a connected graph X; Y = X
G ;

p : X ! X

G
;

be the canonical projection, T � Y be a maximal subtree of Y; and

j : T ! X;

be a morphism of graphs with p � j = idT : We want to make Y into a graph of
groups by assigning to its vertices and edges certain groups which are stabilizers
of some vertices and edges under the action of G on X: To this end we want to
extend

j : T ! X;

to a map (not a graph morphism, in general)

j : Y ! X; �
p � j = idY :

Since V (T ) = V (Y ) we need to de�ne j on edges from Y � T: We will de�ne j on
Y 1+ � T and put j (e) = j (e) for e =2 A: Let e 2 Y 1+ � T: Since p is locally surjective
there exists an edge e

0 2 E (X) with p�e0 = �e and pe
0
= e: Then we de�ne

j (e) = e
0
and

j (e) = e
0:

Clearly, p � j = idY : Observed that p (�je) = �e = p (j�e) hence G�je = Gj�e
so 9e 2 G such that ej�e = �je: For uniformity, if e 2 Y 1+ \ T then we de�ne
e = 1; and for arbitrary e we put e = �1e : Recall that for x 2 X; StabG (x) =
fg 2 Gjgx = xg : Now we de�ne a graph of groups on Y as follows: y 2 Y =) Gy =
StabG (jy) : It is left to de�ne a monomorphism

� : Ge ! G�e;

� : Ge ! G�e:
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It su¢ ces to do it for each e 2 Y 1+: Let e 2 Y 1+; then �je = j�e:

Hence StabG (je) � StabG (j�e) ; so Ge � G�e; and in this case � is the inclusion
map. Also

StabG (je) � StabG (�je) = StabG (ej�e)

= eStabG (j�e) 
�1
e :

We de�ne
� : Ge ! G�e;

as
g 7! eg

�1
e :

This de�nes a graph of groups � = (G; Y ) : It is easy to check that maps

Gv ! Gv;

te ! e:

extend to a homomorphism �;

� : � (�)! G:

Remark 29. � is a homomorphism, you only need to check for the relations.

Now we would like to reconstruct (as much as possible) the original graph X
and the action of G on X from the quotient graph of groups � = �

�
G; XG

�
:We can

do this when X is a tree.

Theorem 40. Let G = � (Y; T ) : Then there exists a tree X; on which G acts
without inversion on edges such that the factor graph GnX is isomorphic to Y and
stabilizers of the vertices and edges in X are conjugate to the canonical images in
G of the groups Gv and � (Ge) : Moreover for the projection

p : X ! Y;

there exists a lift
�eT ; eY � of the pair (T; Y ) such that p maps eT isomorphically onto

T and eY 1� eT 1 bijectively onto Y 1�T 1 and each edge from eY 1� eT 1 has the initial
or terminal vertex in eT :

Proof. Let X� =
[
v2Y�

G
Gv

(union of the cosets) and X1
+ =

[
v2Y 1

+

G
Gv

. Put

� (gGe) = gG�(e);

� (gGe) = gteG�(e);
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g 2 G; e 2 Y 1+ and let eT be the lift of the tree T in X with

eT � = [
v2T�

fGvg

which are left cosets and stabilizers as well. SeteT 1+ = [
v2T 1+

fGvg :

G acts on X by left multiplication. �

Example 76. Let H � G = A � B; then GeH = H \ Ge
=feg

= feg ; which is a

free product. Then,

H \Ag; or H \Bg;
where Ag is conjugate to A; and Bg is conjugate to B: So that

H = H1 � � � � �HK � F:

Which is Kurosh theorem.

Let � = � (X ; Y ) be the graph of spaces. Take a closed subset Z =
a
e

Xe� 1
2 �

� which has a collar neighborhood in �: Let e� be the universal covering of � andeZ � e� be the preimage of Z: We de�ne the dual tree X to eZ � e� .Its vertices
are the components of e� � eZ: Its unoriented edges are the components of eZ: The
vertices of an edge given by a component fZ� of eZ are the two components of e�� eZ
which have fZ� in their closure. The fact that e� is simply connected (as the universal
cover) implies that X is contractible and hence is a tree. The natural action of G
on e� leaves eZ invariant, therefore induces action on X:

Remark 30. Given a universal covering space

p : eX ! X;

and a connected, locally path-connected subspace A � X such that the inclusion is
injective on �1; then each component eA of p�1 (A) is a universal cover of A: To see
this, note that

p : eA! A;

is a covering space, so we have injective maps

�1

� eA�! �1 (A)! �1 (X) ;

whose composition factors through �1 (X) = 1; hence �1
� eA� = 1:

Lemma 13. Let � = � (X ; Y ) be the graph of spaces. e� is itself a graph of
spaces. Also, each vertex space (respectively edge space) is the universal cover of a
vertex space of � (respectively edge space).
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Proof. For any v 2 Y; let Lv = Xv

a a
e

Xe � 1
2

!
; where E is the set of

edges that are the edges incident to v: It should be noted that Xv is a deformation
retract of Lv: Also, recall that the edge maps are �1� injective. It follows thateXv ,! eLv:
So eLv is built from eXv by attaching covering spaces of edge spaces. Because �; �
are �1� injective, these covering spaces of edge spaces really are universal covers.
By iteratively gluing together copies of the eLv we can construct a simply connected
cover of �: �

Lemma 14. Let � be a graph of groups and let X be the underlying graph of
the universal cover e� . For any vertex v 2 Y the set of vertices of X lying above v
is in bijection with G

Gv
and G acts by left translation.

Proof. Let � be a graph of groups and let G = �1 (�) : Fix a base point
u 2 Xv and a choice of lift eu 2 eX: Let g 2 Gv: Then space eXv is a universal cover
of Xv; and so the lift of g to the universal cover e� at eu is contained in eXv: Therefore
the preimage of u that are contained in eXv corresponds to the elements of Gv:

Now consider g 2 GnGv: If g is lifted at eu; then the terminus of this lift is not
in eXv; but in some other component of the preimage of eXv: Call the component
where lift terminates eX~v1 : If g; h are such that both have lifts that terminate ineX~v1 then h

�1g 2 Gv: Completing the proof. �

2. Exercises

Exercise 12. Fix a point v� 2 V (X) and de�ne a subgroup H � G which
consists of all elements of the free product G that can be presented in the form

g�e1g1e2g2 � � � engn;
where g� 2 Gv� ; gi 2 G�ei ; ei 2 E (X) and e1; � � � ; en is a closed path in X at v�:
Prove that H is a subgroup.

Exercise 13. Let � : G ! H be the homomorphism which is de�ned on free
factors of G as follows: �

� (gv) = pvgvp
�1
v ;

� (e) = p�eep
�1
�e ;

�
Prove that � is a homomorphism. (Hint. It su¢ ces to show that � (Rel (Gv)) = 1).

Exercise 14. Prove that � is a retract on H, i.e. � (G) = H; and �jH = idH :

Exercise 15. De�ne a graph of groups � = (G; Y ) : Consider the maps

Gv ! Gv;

te ! e:

extend to a homomorphism �;

� : � (�)! G:

Prove that � is a homomorphism.



CHAPTER 7

Chapter 7

Recall

Theorem 41. Let G = � (Y; T ) : Then there exists a tree X; on which G acts
without inversion on edges such that the factor graph GnX is isomorphic to Y and
stabilizers of the vertices and edges in X are conjugate to the canonical images in
G of the groups Gv and � (Ge) : Moreover for the projection

p : X ! Y;

there exists a lift
�eT ; eY � of the pair (T; Y ) such that p maps eT isomorphically onto

T and eY 1� eT 1 bijectively onto Y 1�T 1 and each edge from eY 1� eT 1 has the initial
or terminal vertex in eT :

Proof. Let X� =
[
v2Y�

G
Gv

(union of the cosets) and

X1
+ =

[
v2Y 1

+

G

Gv
:

Put

� (gGe) = gG�(e);

� (gGe) = gteG�(e);

g 2 G; e 2 Y 1+ and let eT be the lift of the tree T in X with

eT � = [
v2T�

fGvg

which are left cosets and stabilizers as well. Set

eT 1+ = [
e2T 1+

fGeg :

G acts on X by left multiplication. �
89
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Let G be a fundamental group of a graph of groups with underlying graph Y:
For each edge or vertex a of Y choose Xa to be a connected CW-complex with
fundamental group Ga: We can do this so that there is an embedding

Xe ,! Xv;

realizing the inclusion of groups. We form the topological space � (X ; Y ) by begin-
ning with the disjoint union a

v2V
Xv

aa
e2E

Xe � I;

and

(1) identifying Xe � I with Xe � I via (x; t) � (x; 1� t) and
(2) gluing Xe�f0g to X�(e) via the given inclusion. The resulting topological

space has fundamental group G:

Z =
a
e

Xe � 1
2

To prove that G acts on a tree. We do the following.

Proof. Let � = � (X ; Y ) be the graph of spaces. Take a closed subset Z =a
e

Xe� 1
2 � � which has a collar neighborhood in �: Let e� be the universal covering

of � and eZ � e� be the preimage of Z: We de�ne the dual tree X to eZ � e� .Its
vertices are the components of e� � eZ: Its unoriented edges are the components ofeZ: The vertices of an edge given by a component fZ� of eZ are the two components
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of e� � eZ which have fZ� in their closure. The fact that e� is simply connected (as
the universal cover) implies that X is contractible and hence is a tree. The natural
action of G on e� (acts on the universal cover of e� ) leaves eZ invariant, therefore
induces action on X: �

Remark 31. Given a universal covering space

p : eX ! X;

and a connected, locally path connected subspace A � X such that the inclusion is
injective on �1; then each component eA of p�1 (A) is a universal cover of A: To see
this, note that

p : eA! A;

is a covering space, eA p
0

! A
i eA # # iAeX p! X

so we have injective maps

�1

� eA�! �1 (A)! �1 (X) ;

whose composition factors through �1
� eX� = 1; hence �1 � eA� = 1:

Lemma 15. Let � (X ; Y ) a graph of spaces. e� is itself a graph of spaces. Also,
each vertex space (respectively edge space) is the universal cover of a vertex space
of � (respectively edge space).

Lv

Proof. For any v 2 Y; let Lv = Xv

a a
e2E

Xe � 1
2

!
; where E is the set of

edges which are incident to v: It should be noted that Xv is a deformation retract
of Lv: Also, recall that the edge maps are �1 injective. It follows thatfXv ,! fLv:
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So fLv is built from fXv by attaching covering spaces of edges spaces. Because �; �
are �1 injective, these covering spaces of edges spaces really are universal covers.
By iteratively gluing together copies of the fLv we can construct a simply connected
cover of �: �

Lemma 16. Let � be a graph of groups and let X be the underlying graph of
the universal cover e�: For any vertex v 2 Y the set of vertices of X lying above v
is a bijection with G

Gv
and G acts by left translation.

Proof. Let � be a graph of groups and let G = �1 (�) : Fix a base point
u 2 Xv and a choice of lift eu 2 eX: Let g 2 Gv: The space eXv is a universal cover of
Xv; and so the lift of g to the universal cover e� at eu is contained in eXv: Therefore
the preimages of u that are contained in eXv correspond to the elements of Gv:

Now consider g 2 GnGv: If g is lifted at eu; then the terminus of this lift is not ineXv; but in some other component of the preimage of Xv: Call the component where
the lift terminates eX ev1 : If g; h are such that both have lifts that terminate in eX ev1
then h�1g 2 Gv: To see this

(1) If g 2 Gv; then egeu 2 eXv; Gv � Stab
� eXv

�
;

(2) If gGv 6= Gv; then h�1g 2 Gv;
(3) If eXv1 � gGv; then Stab

� eXv1

�
= gGvg

�1:

�
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1. The Normal form theorem

Theorem 42. Let � be a graph of groups and G = �1 (�) :

(1) Any g 2 G can be written as g = g�t
�1
e1g1 � � � t

�n
engn as before.

(2) If g = 1; this expression includes "backtracking", meaning that for some i,
ei = ei+1 with �i = �i+1; and furthermore that if �i = �1; then gi 2 � (Gei)
and if �i = 1; then gi 2 � (Gei) :

Remark 32. "backtracking" = t�1e1 gite1 2 Gvi : Suppose that ei =2 T this implies
that 9 a relation gi 2 Gvi = G�(ei): Where we have

t�1ei � (gi) tei = g�(ei);

the word is reduced.

Theorem 43. (Kusosh�s theorem) Let H be a free product of the groups Hi;
i 2 I amalgamated over a common subgroup A: Let G be a subgroup of H such
that

G \ xAx�1 = f1g ;
for all x 2 H: Then there exists a free group F and a system of representatives Xi

of double cosets Gn HHi
such that G is a free product of the group F and the groups

G \ xHix
�1 for i 2 I; x 2 Xi:

Proof. Let X be a tree on which H acts.

X� =

�
H

A

�
[
 [
i2I

H

Hi

!
;

and

X1
+ =

[
i2I

�
H

A
� fig

�
:

The initial and terminal vertices of an edge (hA; i) are hA and hHi: G acts on X.
Let Y = GnX;

p : X ! Y;
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the canonical projection, T a maximal subtree of Y;
�eT ; eY � a lift. V eT is maximal

set of left cosets xA and xHi with the property that they are not G equivalent, i.e.,�
hHi; is equivalent

gehHi:

�
Thus, there exists systems of representatives XA and Xi of double cosets GnHA and
Gn HHi

such that eT � = fxAjx 2 XAg [
[
i2I
fxHijx 2 Xig :

Stab (xA) = G \ xAx�1 = f1g ;
Stab (xHi) = G \ xHix

�1;

the stabilizers of edges are trivial. Downstairs we get s free product. Recall that

Stab (S) = H;

G � H;H = �
A
Hi:

StabG (S) = G \ StabH (S) :
For each edge ee 2 eY 1 with terminal vertex outside eT �; let t�1e be an element carrying
this vertex into eT �: Thus F has a basis consisting of all these elements te

�

Example 77. G =

*
Gv; tejt�1ei � (gi) tei = g�(ei)| {z }

Can be remove

g 2 Ge; te = 1| {z }; i
stable letters

fe 2 I; v 2 Y
+

then it is a free product generated by te:

Theorem 44. ((~1949) Higman- Neumann theorem) If G is a countable group,
then G can be embedded in a 2 generator group.

Proof. Let x1; x2; � � � be a generating set for G. Then G < G1 = G �Z: Let t
be a generator of Z; and yi = xit; y� = t: Then G1 is generated by

y�; y1; � � � ; and jyij =1: Let
G2 =



G1; t�; t1; � � � jt�1i yiti = yi+1

�
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Then G1 < G2 because G2 is obtained from G1 by an in�nite sequence of HNN
extensions. The subgroup K of G2 generated by the t0is is free and has the t

0
is as

basis. Embed K into F2 = ha; bi by setting b�iabi = ti:

G3 = G2 �
K
F2:

Then G2 < G3 and G3 is generated by y�; a; b: The subgroup H of G3 generated by
y�; b is free of rank 2 becauseH\G2 andH\F2 are in�nite cyclic, andH\K = f1g :

Let

G4 =


G3; sjs�1as = b; s�1bs = y�

�
= G3 �

F2
;

where the two inclusions of F2 in G3 have images H and F2: G4 is generated by a
and s: �

Example 78. Hg =


G; tjt�1gt = g2

�
;

(1) If g = 1; then Hg �= G � hti :
(2) If g 6= 1; then Hg � G � hti :Under the word problem.

Open problem Construct a �nitely presented in�nite group of bounded expo-
nent. Where we mean by bounded exponent=(gn = 1 for any g 2 G).

Theorem 45. Let H be a fundamental group of a graph of groups � (H;X)
and G � H. Then G is the fundamental group of a graph of groups, where the
vertex groups are subgroups of conjugates of groups Hv; v 2 X� and edge groups
are subgroups of conjugates of He; e 2 X1:

Definition 54. We say that G splits over a subgroup C if G = A�
C
or G = A�

C
B

with A 6= C 6= B. If G splits over some subgroup we say that G is splittable.

Definition 55. If C is abelian (respectively cyclic) we say that G has abelian
(respectively cyclic) splitting.

Corollary 7. If H = A�
C
or H = A �

C
B and G is a �nitely generated non

splittable subgroup of H, then G lies in a conjugate of A or B.

Proof. G is a subgroup which acts on the tree T: G is �nitely generated.
Why? Because the number of edges in the tree are �nite. The number of stable
letters are �nite. Now add all the edges. Therefore

G =
1[
i=1

edges,

=)(= since G is �nitely generated. �
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Example 79. Suppose you have a �nite graphs of groups

Two vertex groups are not trivial, this example is for the corollary.

Example 80. If G is not �nitely generated. Take

H = Z�
Z
=


a; tjt�1at = a2

�
;

has in�nite order.
G =



t�iati; i = 1; 2; � � �

�
Example 81. Consider the homomorphism SL2 (Z) = Z4 �

Z2
Z6 ! Z12 given

by the natural embeddings of the factors in the group Z12: Prove that its kernel is a
free group of rank 2:

Proof. SL2 (Z) =


aja4 = 1

�
�

a2=b3



bjb6 = 1

�
:

Z12 =


c; jc12 = 1

�
:

A natural homomorphism

' : a! c3;

' : b! c2;

' : ab�1 ! c:

We need to show that [a; b] ;
�
a; b2

�
belong to the kernel. Then

ker' �= F2

where F2 is a free group of rank 2: Let

N =

*
[a; b]|{z}
=x

;
�
a; b2

�| {z }
=y

+
2 ker'

Then we show that N EG:
axa�1 = a2ba�1b�1a�1

= bab�1a�1 = x�1:

bxb�1 = baba�1b�2

= bab�1a�1ab2a�1b�2 = x�1y:
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aya�1 = a2b2a�1b�2a�2:

byb�1 = bab2a�1b�2

Then G
N has at most 12 elements such that �am�bk where

�
m = 0; � � � ; 3;
k = 0; � � � ; 5:

�
: There-

fore, x; y freely generates the ker': Consider all 2 letter products elements of G
which have the form

(1.1) a�ib�I � � � b�Iab�Ia;

for
�
� = 0; 1; 2
�i = 1; 2:

�
. Then (1:1) are not trivial elements. We need to consider

xy; xy�1; x�1y; x�1y�1: Therefore N is free. �
Example 82. HNN extension

Which is a free group corresponding to stable letters.

Theorem 46. A group G is virtually free of �nite rank i¤ G is the fundamental
group of a �nite graph of �nite groups.

The proof uses the notion of ends of a f.g. group.

Definition 56. For each �nite subgraph K of Cayley (G) (G is f.g.), the num-
ber of connected components of Cayley (G). K is �nite; denote by n (K) the number
of in�nite ones. Now de�ne the number of ends e (G) = supn (K).

2. Exercises

Exercise 16. Prove that if G = A � B where A;B are non trivial and H is a
�nitely generated normal subgroup of G; then H is trivial or has �nite index in G:
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1. Fully residually free groups

Definition 57. A group G is residually free if for any non-trivial g 2 G there
exists � 2 Hom (G;F ), where F is a free group, such that g� 6= 1:

Definition 58. A group G is fully residually free or discriminated by F
if for any �nite subset M � G with 1 =2M there exists an Fhomomorphism

� : G! F;

such that 1 =2 � (M).

Definition 59. Fg such groups are called limit groups.

Example 83. Fg free groups, free abelian groups, surface groups, extensions of
centralizers of fully residually free groups, subgroups of fully residually free groups.

Example 84. Easy exercise:

(1) Residually free groups are torsion free. If G is fully residually free group,
then

xn = 1;

in G; x 6= 1 in G; gives
� : G! F;

with x�1 6= 1 implies torsion free.
(2) Fg free groups and free abelian groups are fully residually free.
(3) Fg subgroups of fully residually free groups are fully residually free.
(4) Fully residually free groups are commutative transitive.
(5) F�F is NOT fully residually free. Consider F�Z which not commutative

transitive. Why? Well take

[y; z] = 1;

(y; 1)  ! (1; x)

(z; 1)  ! (1; x) :

Definition 60. G is an extension of centralizer of H if

G = hH; tj [CH (u) ; t] = 1i :

Remark 33. De�nition (60) is an HNN extension and also a normal form.

Lemma 17. If H is a limit group, then G is a limit group.

99
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Proof.
� : G! H

is identical on H and t� = un; for a large n.

t� ! un;

h 2 H ! h 2 H
elements of H get send to elements of H: Elements in G have canonical form

g1t
m1g2t

m2 � � � tmkgk+1;

where gi =2 CH (u) ;(because it would not be a formal form) i = 1; � � � ; k: They are
mapped into

g1u
nm1g2u

nm2 � � �unmkgk+1:

�

Example 85. F = G� � G1 � � � � � Gn; then
Gn = hGn�1; tnj [C (un) ; tn] = 1i :

Nonabelian , the limit has a splitting as a fundamental group.

Example 86. Take

G = hF (a; b) ; tj [[a; b] ; t] = 1i ;
this is freely residually free. Where

H =


a; b; at; bt

�
;

also we see that [a; b] = [at; bt] ; then

H �= S2:

Then the surface group is fully residually free.

H �= S2

Theorem 47. [Kharlampovich, Miasnikov, 96] That is it. Every f.g. fully
residually free group is a subgroup of a group obtained from a free group as a �nite
series of extensions of centralizers.

Moreover, there is an algorithm to �nd this embedding.

Example 87. Examples of sentences in the theory of F : Only for free groups.

(1) ( Vaught�s identity)8x8y8z
�
x2y2z2 = 1! ([x; y] = 1& [x; z] = 1& [y; z] = 1)

�
:

Which a nontrivial sentence because of the universal quanti�er 8x8y8z
(2) (Torsion free)8x (xn = 1! x = 1) : There are in�nite universal sentences.
(3) (Commutation transitivity)8x8y8z (x 6= 1! ([x; y] = 1& [x; z] = 1)! [y; z] = 1) :
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(4) (Commutation transitivity) doesn�t hold in F2�F2. Because the elements
from the left term do not commute with elements from the right term

(5) (Separate conjugate Abelian) 8x8y ([x; xy] = 1! [x; y] = 1)
(6) 8x; y9z| {z }

Not universal sentence

�
xy = yx!

�
x = z2 _ y = z2 _ xy = z2

��
; not true in

a free abelian group of rank 2.

Example 88. For (6) we take xy = yx in F: Then v = uk; and y = um for
some u 2 F and k;m 2 Z: If

If k 2 2Z; then z = u
k
2 ;

If m 2 2Z; then z = u
m
2 ;

otherwise k +m 2 2Z; then xy = uk+m; z = u
m+k
2 :

And we have

8x; y9z
�
xy = yx!

�
x = z2 _

or
y = z2 _ xy = z2

��
(Separate conjugate Abelian)=maxAbelian subgroups are malnormal.

Definition 61. Malnormal. A � G; A is malnormal if Ag \A 6= 1! g 2 A:

Example 89. In F take A = hai ; then Ag\A 6= 1 implies that we can represent

g�1ung = um ! g = uk:

Then maxAbelian groups are malnormal.

Example 90. 8x8y9z
�
[x; y] = 1!

�
x = z2 _ y = z2 _ xy = z2

��
: This implies

that if a group G is 89 ( not an universal sentence) equivalent to F; then it does not
have noncyclic abelian subgroups.

Example 91. F has Magnus�properties, namely, for n;m the following sen-
tence is true:

8x8y
 
9z1; � � � ; zm+n

 
x =

nY
i=1

z�1i y�1zi ^ y =
m+nY
i=n+1

z�1i x�1zi

!
! 9z

�
x = z�1y�1z

�!
:

In F if two elements has the same normal closures then,

x = g�1yg; or x = g�1yg;

for some g 2 F: If they generate same normal subgroup then

ncl (x) = ncl (y) ;

where ncl (x) is the minimal normal subgroup containing x:

2. Elementary theory

Definition 62. The elementary theory Th (G) of a group G is the set of all
�rst order sentences in the language of group theory which are true in G.

Condition 2. Recall, that the group theory language consists of multiplica-
tion , inversion �1, and the identity symbol 1.
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Condition 3. Every group theory sentence is equivalent to one of the type:

� = 8X19Y1 � � � 8Xk9Yk
r_
p=1

0@ ŝ

i=1

upi (X1; Y1; � � � ; Xk; Yk) = 1;
t̂

j=1

vpj (X1; Y1; � � � ; Xk; Yk) 6= 1

1A :

where upi; vpj are group words (products of variables (tuples) and their inverses).

Example 92. Consider X1; Y1; � � � ; Xn; Yn;

u (X1; Y1; � � � ) = x21y
�1xx2y1:

Informally:

Th (G) = all the information about G that can be expressed in the �rst order logic
of group theory. Hence:

Th (G) = Th (H), G;

and H are indistinguishable in the �rst order logic (elementary equivalent) Th (G)
is decidable , the �rst order information about G is available (in principle) to us.

3. Tarski�s Problems

In 1945 Alfred Tarski posed the following problems.

(1) Do the elementary theories of free non abelian groups Fn and Fm coincide?
(2) Is the elementary theory of a free non-abelian group Fn decidable?

Theorem 48. [Kharlampovich and Myasnikov (1998-2006), indepen-
dently Sela (2001-2006)] Th (Fn) = Th (Fm) ; m; n > 1.

Theorem 49. [Kharlampovich and Myasnikov] The elementary the-
ory Th(F ) of a free group F even with constants from F in the language
is decidable.

Remark 34. Long history of Tarski�s type problems in algebra. Cru-
cial results on �elds, groups, boolean algebras, etc.

(3) Complex numbers C;
(a). Th (C) = Th (F ) i¤ F is an algebraically closed �eld. This says

that every equation has a solution in this �eld.
(b). Th (C) is decidable.
This led to development of the theory of algebraically closed �elds.

Elimination of quanti�ers: every formula is logically equivalent (in the
theory ACF) to a boolean combination of quanti�er free formulas (some-
thing about systems of equations).

(4) Reals R
(a). Th (R) = Th (F ) i¤ F is an algebraically closed �eld. This says

that every equation has a solution in this �eld.
(b). Th (R) is decidable.
A real closed �eld = an ordered �eld where every odd degree polyno-

mial has a root and every element or its negative is a square. Theory of
real closed �elds (Artin, Schreier), 17th Hilbert Problem (Artin).



4. ALGEBRAIC SETS 103

Elimination of quanti�ers (to equations): every formula is logically
equivalent (in the theory RCF) to a boolean combination of quanti�er
free formulas.

(5) p� adics Qp
Ax-Kochen, Ershov
(a). Th (Qp) = Th (F ) i¤ F is p�adically closed �eld. This says that

every equation has a solution in this �eld.
(b). Th (Qp) is decidable.
Existence of roots of odd degree polynomials in R � Hensel�s lemma

in Qp.
Elimination of quanti�ers (to equations).

(6) Tarski�s problems are solved for abelian groups (Tarski, Szmielew).
(7) For non-abelian groups results are sporadic.

Theorem 50. Novosibirsk Theorem [Malcev, Ershov, Romanovskii,
Noskov] Let G be a �nitely generated solvable group. Then Th(G) is de-
cidable i¤ G is virtually abelian ( �nite extension of an abelian group).

Example 93. Free nilpotent groups are undecidable.

(8) Elementary theories of free semigroups of di¤erent ranks are di¤erent and
undecidable

(9) Interpretation of arithmetic.
(10) Elementary classi�cation.

Remeslennikov, Myasnikov, Oger: elementary classi�cation of nilpo-
tent groups (not �nished yet). Typical results:

Theorem 51. [Myasnikov, Oger] Finitely generated non abelian nilpo-
tent groups G and H are elementarily equivalent i¤

G� Z ' H � Z:

Many subgroups are de�nable by �rst order formulas, many algebraic
invariants are de�nable. Where de�nable means:

f (x) = (9y1 � � �� (x1; y1 � � � )) :
(11) Free groups.

Nothing like that in free groups: no visible logical invariants. Ranks of
free non-abelian groups are not de�nable. Only maximal cyclic subgroups
are de�nable.

Elimination of quanti�ers (as we know now): to boolean combinations
of 89 formulas!

New methods appeared. It seems these methods allow one to deal with
a wide class of groups which are somewhat like free groups: hyperbolic,
relatively hyperbolic, acting nicely on � hyperbolic spaces, etc.

4. Algebraic sets

G - a group generated by A. F (X) free group on X = fx1; x2; � � � ; xng.

Definition 63. A system of equations S(X;A) = 1 in variables X and coe¢ -
cients from G (viewed as a subset of G � F (X)).
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Definition 64. A solution of S(X;A) = 1 in G is a tuple (g1; � � � ; gn) 2 Gn
such that S (g1; � � � ; gn) = 1 in G.

Definition 65. VG(S), the set of all solutions of S = 1 in G, is called an
algebraic set de�ned by S.

Definition 66. System of equations S1 (x) = 1 and S2 (X) = 1 are equivalent
if they have the same solution set.

G C
G (A) = G � F (x1; x2; � � � ; xn) C [x1; x2; � � � ; xn]
a1x

2
1x
�1
2 a2 = 1; a

0s are constant c1x1x2 + c2x2x2

5. Radicals and coordinates groups

The maximal subset
R(S) � G � F (X)

with

VG(R(S)) = VG(S)

is the radical of S = 1 in G. The quotient group

GR(S) =
G[X]

R(S)
=
G � F (X)
R (S)

:

is the coordinate group of S = 1. Solutions of S(X) = 1 in G, G homomorphisms
GR(S) ! G.

Radical in G Radical in C
R (S) � ncl (S)

G�F (X)
Rad (S)

G[X]
R(S)

C[x1;x2;��� ;xn]
Rad(S)

6. Zariski topology

Remark 35. Zariski topology on Gn formed by algebraic sets in Gn as a sub-
basis for the closed sets.

Remark 36. Zariski topology on F with constants in the language: closed sets=
algebraic sets.

Remark 37. Coordinate groups of algebraic sets over F are residually free. G
is residually free if for any non-trivial g 2 G there exists a

homomorphism � 2 Hom (G;F ) such that g� 6= 1.

Lemma 18. If [a; b] 6= 1 in F (free group) then for all solution of the
system

[x; ya] = 1 ^
�
x; yb

�
= 1^ !

�
x; yab

�
= 1;

has either x = 1 or y = 1:

Remark 38. Finite disjunction is equivalent to a �nite system of equations.
All follows from the (CSA) properties.
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Proof. Suppose x; y 6= 1 and solve�
x; yba

�
= 1

and �
x; yab

�
= 1:

To obtain a contradiction of [a; b] 6= 1:
Since � �

xb; yab
�
= 1;�

x; yab
�
= 1;

��
commutative and

transitive.

�
This implies that �

x; xb
�
= 1! [x; b] = 1:

Similar we can show that

[x; a] = 1; and [x; b] = 1;

implies that
[a; b] = 1

which is a contradiction. �

7. Noetherian groups

Equationally Noetherian groups: The following conditions are equivalent:
(1) G is equationally Noetherian, i.e., every system S(X) = 1 over G is equiv-

alent to some �nite part of itself.
(2) the Zariski topology over Gn is Noetherian for every n, i.e., every proper

descending chain of closed sets in Gn is �nite.
(3) Every chain of proper epimorphisms of coordinate groups over G is �nite.

Proof. (1) =) (2)
The varieties of systems

V (S1) > V (S2) > � � � > V (Sn) = V (Sn+1) :

If V (S2) is smaller than V (S1) then it has more equations. This implies that 9
in�nite equations. Then 9 an in�nite chain of varieties=)(= : Since Sn = Sn+1
for some n:

(2) =) (1) Consider the radical

G

R (S1)
!
6=

G

R (S2)
; then

S1 � S2:

Then for the �nite ascending chain of radicals, i.e.,

G

R (S1)
!
6=

G

R (S2)
! � � � G

R (Sn�1)
!
6=

G

R (Sn)

S1 � S2; � � � ; Sn�1 � Sn:

If G
R(S2)

has more solutions than G
R(S1)

, then we would obtain and in�nite ascending
chain which impossible. �

Theorem 52. [R. Bryant (1977), V.Guba (1986)]: Free groups are equationally
Noetherian.
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Proof. Let

H� ! H1 ! � � �
be a sequence of epimorphisms between fg groups. Then the sequence

Hom(H�; F ) - Hom(H1; F ) - � � �

eventually stabilizes because

H� ! H1 ! H2

Hom(H�; F ) & # . Hom(H1; F )
F

we embed F in SL2 (Q) and the sequence of algebraic varieties

Hom(H�; SL2 (Q)) - Hom(H1; SL2 (Q)) - � � �

eventually stabilizes. �

Example 94. F � GL2 (Z) ; for

xi !
�
x11 x12
x13 x14

�
;

ai !
�
a11 a12
a13 a14

�
;

where xiai: We have a system of equations on one side then on the other side we
are going to have a system of polynomial equations. Let S over F; and F ! �S over
Z

S1 = 1!
�
f1 f2
f3 f4

�
:

S = 1!

8>><>>:
f1 = 0
f2 = 0
f3 = 0
f4 = 1

9>>=>>; :

Theorem 53. Linear groups over a commutative, Noetherian, unitary ring are
equationally Noetherian.

Theorem 54. [Dahmani, Groves, 2006] Torsion free relatively hyperbolic groups
with abelian parabolics are equationally Noetherian (for torsion free hyperbolic groups
proved by Sela).

8. Irreducible components

If the Zariski topology is Noetherian then every algebraic set can be uniquely
presented as a �nite union of its irreducible components:

V = V1 [ � � � [ Vk:

Recall, that a closed subset V is irreducible if it is not a union of two proper closed
(in the induced topology) subsets.

The following is an immediate corollary of the decomposition of algebraic sets
into their irreducible components.
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Theorem 55. (Embedding theorem) Let G be equationally Noetherian. Then
for every system of equations S(X) = 1 over G there are �nitely many irreducible
systems S1 (X) = 1; � � � ; Sm (X) = 1 (that determine the irreducible components of
the algebraic set V (S)) such that

GR(S) ,! GR(S1) �GR(S2) � � � � �GR(Sm):

Theorem 56. VF (S) is irreducible , FR(S) is discriminated by F .

Recall, that a group G is discriminated by a subgroup H if for any �nite subset
M � Gwith 1 =2M there exists an H homomorphism:

� : G! H

such that 1 =2 � (M).

Proof. (=))We will prove that V (S) is irreducible if and only if FR(S) is
discriminated in F (by F homomorphisms).

Suppose V (S) is not irreducible and

V (S) =
n[
i=1

V (Si)

is its decomposition into irreducible components. Then

R (S) =
n\
i=1

R (Si) ;

and hence there exist

si 2 R (Si) n fR (S) ; R (Sj) ; j 6= ig :
The set fsi; i = 1; � � � ; ngcannot discriminated in F (by F homomorphisms)

((=) Suppose now s1; � � � ; sn are elements such that for any retract
f : FR(S) ! F

there exists i such that f(si) = 1

GR(S)
. &

GR(S1) GR(S2)
& .

F

then 9si 2 Si; it kills one of the elements. If is not irreducible then is not
residually free. Then

(8.1) V (S) =
m[
i=1

V (Si [ si) :

Equation (8:1) implies that every solution of S is also a solution of Si but not all
of then. This implies it is not residually free, which implies not reducible. �





CHAPTER 9

Chapter 9

We recap the previous chapter

Theorem 57. [Kharlampovich, Miasnikov, 96] That is it. Every f.g. fully
residually free group is a subgroup of a group obtained from a free group as a �nite
series of extensions of centralizers.

From this we have:

Corollary 8. Every fg fully residually free group is �nite represented.

Proof. Sketch. If

G =


H; tjt�1at = b; a 2 A; b 2 B

�
;

and G �H
A=B

is fg; and A is fg then G andH are fg: Then by a normal form argument

conclude. �

We know that a fg fully residue free group G is a subgroup of Gn: Then

F � G� � G1 � � � � � Gn;
then

Gn =


Gn�1; tj

�
CGn�1 (u) ; t

�
= 1
�
:

Induction on n: For the case n = 0 implies that G � F obvious since is �nitely
presented. Assume all fg are fully residually free groups that a subgroups of a
series of length < n are �nitely presented.

G � Gn =


Gn�1; tj

�
CGn�1 (u) ; t

�
= 1
�
;

G is a fundamental group of graphs of groups with abelian H groups. In particular
H groups are fg vertices groups, and the vertices groups are given by

V = G \Ggn�1:
Since G is fg and also Ggn�1 is fg then the intersection of two fg is also fg group.
Therefore by induction they are �nitely presented. So G is �nitely presented as the
fundamental graphs of groups with �nitely presented groups and �nitely presented
edges groups.

Example 95. (Algebraic Sets) Let G [X] = G�F (X) ; where X = (x1; � � � ; xn) :
Then G = F (a1; � � � ; an) : Then the system of solutions is given by

S (X;A) = S (x1; � � � ; xn; x1; � � � ; xm) :
Where

S (g1; ; gn; a1; ; am) = 1:

109
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Then x21x
2
2x
2
3 = 1; where g1 = un; gk2 ; and g

2
3 = u�n�k; � all solutions live in Gn:The

normal closure is given by
ncl
�
x21x

2
2x
2
3

�
;

and the radical is given by

R
�
x21x

2
2x
2
3

�
= h[x1; x2] ; [x2; x3] ; [x1; x2] ; x1x2x3i :

Note that the radical can be larger then the normal closure.

Radicals and coordinates groups. The maximal subset

R(S) � G � F (X)
with

VG(R(S)) = VG(S)

is the radical of S = 1 in G. The quotient group

GR(S) =
G[X]

R(S)
=
G � F (X)
R (S)

:

is the coordinate group of S = 1. Solutions of S(X) = 1 in G, G homomorphisms
GR(S) ! G. This is solutions are also homomorphism

G [X] ! G;

' : G! G; identically

' : xi ! gi:

Then ' kills s and ncl (S) � ker': Then

' :
G [X]

ncl (S)
! S:

Then

' :
G[X]

R(S)
! G;

is the coordinate group for S:

Example 96. Is S (X) = [x1; x2] [x3; x4] ; then

R (S) = ncl (S) :

Conjecture 1. Radical of many interesting equations are not known.

Example 97. Consider�
a11 a12
a21 a22

��
x11i x12i
x21i x22i

�
=

�
a11x12i + a12x12i �

� �

�
for aij 2 Z then the solution is given by

S (x1; � � � ; xn; a1; � � � ; an) = 1 iff
�
f1 f2
f3 f4

�
;

where 8>><>>:
f11 = 1
f12 = 0
f21 = 0
f22 = 1

9>>=>>; :
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1. Diophantine problem in free groups

Theorem 58. [ Makanin, 1982] There is an algorithm to verify whether a given
system of equations has a solution in a free group ( free semigroup) or not.

He showed that if there is a solution of an equation S (X;A) = 1 in F then there
is a "short" solution of length f (jSj) where f is some �xed computable function.
Extremely hard theorem! Now it is viewed as a major achievement in group theory,
as well as in computer science.

2. Complexity

The original Makanin�s algorithm is very ine¢ cient, not even primitive recur-
sive. Plandowski gave a much improved version ( for free semigroups) : P-space.
Gutierrez devised a P - space algorithm for free groups.

Theorem 59. [ Kharlampovich, Lysenock, Myasnikov, Touikan (2008)] The Dio-
phantine problem for quadratic equations in free groups is NP complete.

Theorem 60. [ announced by Lysenok] The Diophantine problem in free semi-
groups ( groups) is NP complete.

If so many interesting consequences for algorithmic group theory and topology.

3. Existential and Universal theories of F

Theorem 61. The existential Th9 (F ) and the universal Th8 (F ) theories of
F are decidable.

It was known long before that non Abelian free groups have the same existential
and universal theories. Main questions was: what are �nitely generated groups G
with Th9 (F ) = Th8 (F )?

Example 98. For
9x1 � � �xnu (x1; � � �xn) = 1;

no negation. Then

9x1 � � �xn (u (x1; � � �xn) = 1 & v (x1; � � �xn) 6= 1) :
Then the negation of this is

8x1 � � �xn (u! v) :

4. Groups universally equivalent to F

Theorem 62. (Uni�cation theorem 1) Let G be a �nitely generated group and
F � G: Then the following conditions are equivalent:

(1) G is discriminated by F (fully residually free), i.e. for any �nite subset
M � G there exists a homomorphism G! F injective on M:

(2) G is universally equivalent to F:
(3) G is the coordinate group of an irreducible variety over F:
(4) G is a Sela�s limit group.
(5) G is a limit of free groups in Gromov- Hausdor¤ metric.
(6) G embeds into an ultrapower of free groups.



112 9. CHAPTER 9

Definition 67. Ultra�lter U is a mapping
f : P (N)! f1; 0g ;

such that if
A \B = ?;

then

f (A) + f (B) = f (A [B) ;
f (N) = 1:

So is an additive measure.

Remark 39. The ultra�lter is noprinciple if f (�nite) = 0

Definition 68. Ultraproduct of Gi; i 2 I andY
Gi= �

then
fgig � fhig ;

if
gi = hi;

for all i 2 U .

Remark 40. The Ultraproduct is non principal ultra�lter.

Theorem 63. (Uni�cation theorem 2 with coe¢ cients) Let G be a �nitely gen-
erated group containing a free non abelian group F as a subgroup. Then the follow-
ing conditions are equivalent:

(1) G is F discriminant by F:
(2) G is universally equivalent to F (in the language with constants).
(3) G is the coordinate group of an irreducible variety over F:
(4) G is Sela�s limit group.
(5) G is a limit of free groups in Gromov- Hausdor¤ metric.
(6) G F - invariant into an ultrapower of F:

Proof. Equivalence (1), (3) has been already proved (see theorem 56 chap-
ter 8). We will prove the equivalence

(1), (2) :
Let LA be the language of group theory with generators A of F as constants.

Let G be a fg group which is F - discriminated by F: Consider a formula

9X
�
U (X;A) = 1

^
W (X;A) 6= 1

�
:

This formula is true in F; then it is also true in G; because F � G: If it is true in
G; then for some X 2 Gm holds

U (X;A) = 1;

and
W (X;A) 6= 1:

Since G is F - discriminated by F; there is an F - homomorphism

� : G! F;
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�
� (W (X;A)) 6= 1;

this is
W
�
X
�
; A
�
6= 1:

Of course
U
�
X
�
; A
�
= 1:

Therefore the above formula is true in F: Since in F - group a conjunction os equa-
tions [inequalities] is equivalent to one equation [respectively, inequality], the same
existential sentence in the language LA are true in G and in F:

(2) =) (1) :
Suppose now that G is F - universally equivalent to F: Let

G = hX;AjS (X;A) = 1i ;
be a presentation of G and

w1 (X;A) ; � � �wk (X;A) ;
nontrivial elements in G: Let Y be the set of the same cardinality as X: Consider
a system of equations

S (Y;A) = 1;

in variables Y in F: Since the group F is equationally Noetherian, this system is
equivalent over F to a �nite subsystem

S1 (Y;A) = 1:

The formula

 = 8Y (S1 (Y;A) = 1! (w1 (Y;A) = 1 _ � � � _ wk (Y;A) = 1)) ;
is false in G; therefore it is false in F: This means that there exists a set of elements
B in F such that

S1 (B;A) = 1;

and, therefore,
S (B;A) = 1;

such that
w1 (B;A) 6= 1 ^ � � � ^ wk (B;A) 6= 1:

The map
X ! B

that is identical on F can be extended to the F - homomorphism from G to F: �

5. Limits of free groups

Definition 69. Limit group by Sela. Let H be a fg; consider a sequence
f�ig in Hom (H;F ) is stable if, for all h 2 H; h�i is eventually always 1 or even-
tually never 1: Then the stable kernel is

ker�i���!
=
�
h 2 Hjh�i = 1 for almost all i

	
:

G is a limit group if there is a fg H and a stable sequence f�ig �

G �=
H

ker�i���!
:
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H acts on the Cayley (F ) through 'i then

h (v) = 'i (h) v;

�x i: Then

j'i (xj) ej ! 1;
as i ! 1:

We rescale for i the metric in Cayley (F ) by dividing distances by max j'i (xj) ej
j=1;��� ;n

:

The sequence of R-trees

In Gromov-Hausdor¤ the sequence of actions converges to the action of H on R-
trees. Then

ker' = ker�i���!
:

Proof. We will prove now the equivalence (1) =) (4) :
Suppose that

H = hg1; � � � ; gki ;
is fg and discriminated by F: There exists a sequence of homomorphism

�n : G! F;

so that �n maps the elements in a ball of radius n in the Cayley graph of H to
distinct elements in F:

�n maps Bn monomorphically
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This is a stable sequence of homomorphism �m: In general, G is a quotient of
H; but since the homomorphism were chosen so that �n maps a ball of radius n
monomorphically into F; G is isomorphic to H and, therefore, H is a limit group.

G �=
H

ker�i���!
�= H:

To prove the converse we may assume that a limit group G is non Abelian
because the statement is, obviously, true for Abelian groups. By de�nition, there
exists a fg group H; and a sequence of homomorphisms

�i : H ! F;

so that

G �=
H

ker�i���!
:

With out lost of generality we can assume that H is �nitely presented. Add a
relation one at a time to H to obtain
F1 ! H1 ! H2 ! � � � ! Hi ! G
& & # Hom (H2; F ) . Hom (Hi; F ) . Hom (G;F )

F

Hom (G;F ) sequence of Hom (Hi; F ) stabilizes because Noetherian property at
some point

Hom (G;F ) = Hom (Hi; F )

for some i since Hi is �nitely presented. We assume Hom (H;F ) = Hom (G;F )
and hence that the �i�s are de�ned on G: Each non trivial element of G is mapped
to 1 by only �nitely many �i so G is F -discriminated. �

We proved the equivalence (1) , (2) , (3) , (4) : The other statements we
will prove later.
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Chapter 10

Example 99. The universal sentence, 8x; y [x; y] 6= 1! w (x; y) 6= 1; let w be
an arbitrary group word in x; y: Also this is true for a free group. Then this is true
for �nite residually free group. Therefore they generate a subgroup F . Thus, F is
true:

F j= 8x; y [x; y] 6= 1! w (x; y) 6= 1:
Therefore G j= ' �nite residually free, every generator nonabelian subgroup is free
in G:

Theorem 64. (Uni�cation theorem 1) Let G be a �nitely generated group and
F � G: Then the following conditions are equivalent:

(1) G is discriminated by F (fully residually free), i.e. for any �nite subset
M � G there exists a homomorphism G! F injective on M:

(2) G is universally equivalent to F:
(3) G is the coordinate group of an irreducible variety over F:
(4) G is a Sela�s limit group.

Definition 70. Limit group by Sela. Let H be a fg; consider a sequence
f�ig in Hom (H;F ) is stable if, for all h 2 H; h�i is eventually always 1 or even-
tually never 1: Then the stable kernel is

ker�i���!
=
�
h 2 Hjh�i = 1 for almost all i

	
:

G is a limit group if there is a fg H and a stable sequence f�ig �

G �=
H

ker�i���!
:

[Ch. Champetier and V. Guirardel 2004] A marked group (G;S) is a group
G with a prescribed family of generators S = (s1; � � � ; sn) : Two marked groups
(G; (s1; � � � ; sn)) and

�
G

0
;
�
s
0

1; � � � ; s
0

n

��
are isomorphic as marked groups if the

bijection si $ s
0

i extends to an isomorphic. Equivalently, their Cayley graphs are
isomorphic as labelled graphs.

Example 100. If we consider

Fn (S)
'1! (G1; S)

'2 & # '
(G2; S)

then we say that '1 is equivalent to '2: So that

Fn (S)

N1
= G1;

Fn (S)

N2
= G2

117
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Example 101. Consider (hai ; (1; a)) and (hai ; (a; 1)) are not isomorphic as
marked groups.

Definition 71. Denote by Gn the set of groups marked by n elements up to
isomorphism of marked groups.

1. A topology on spaces of marked groups

Definition 72. Topology on Gn: The topology in terms of normal subgroups
it will be constructed in the following way: The generating set S of (G;S) induces
a word metric on G: We denote by B(G;S) (R) its ball of radius R center at the
identity in the free group. Let 2Fn be the set of all subsets of the free group Fn: For
any subsets A;A

0
consider

V
�
A;A

0
�
= max

n
R 2 N [1jA \BFn(s1;��� ;sn) (R) = A

0
\BFn(s1;��� ;sn) (R)

o
:

Example 102. If A = A
0
this implies that V

�
A;A

0
�
= V (A;A) =1; because

the intersect every where.

The above de�nition induces a metric d on 2Fn de�ned by d
�
A;A

0
�
= e

�V
�
A;A

0�
:

This metric is ultrametric and makes 2Fn in a compact metric space.

Definition 73. An ultrametric space is a set of points M with an associated
distance function

d :M �M ! R;
� 8x; y; z in M one has

(1) d (x; y) ;
(2) d (x; y) = 0; if x = y;
(3) d (x; y) = d (y; x) ;
(4) d (x; y) � max (d (x; z) ; d (y; z)) ; the ultrametric.
The topology in terms of epimorphisms. Two epimorphisms

Fn ! Gi;

i = 1; 2 of Gn are closed if their kernels are closed.
The topology in terms of relations. One can de�ne a metric on Gn by

setting the distance between two marked groups (G;S) and
�
G

0
; S

0
�
to be e�N

if they have exactly the same relations of length at most N ( under the bijection
S  ! S

0
) (Grigorchuk, Gromov�s metric). Finally, a limit group is a limit ( with

respect to the metric above) of free group marked as elements

Example 103. Limits groups
(1) An in�nite presented group hs1; � � � ; snjr1; � � � ; ri; � � � i marked by s1; � � � ; sn

is a limit of �nitely presented groups

hs1; � � � ; snjr1; � � � ; rii
when i!1:

(2) Z
iZ converges to Z as i!1:

(3) A free Abelian group of rank 2 is a limit of a sequence of cyclic groups
with marking

(hai ; (a; an)) ; n!1:
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(4) A sequence of markings of Z converges to some marking of Zk:
(5) A residually �nite groups is a limit of �nite groups.

Example 104. Take w1; � � � ; wk generators of F2 (a; b). Then Fk is a limit of
markings of F2: Let F (a; b) and w1 (a; b) ; � � � ; wk (a; b) satisfy the small cancellation
property C

�
1
100

�
: Then the piece juj < 1

100 min (jwij ; jwj j) : There is no piece which
is longer than 1

100 : No relations in F2 (a; b) between w1; � � � ; wk of length < 100:
Iterate then take the limit and in the limit we do not have a relation.

In the de�nition of a limit group, F can be replaced by any equationally Noe-
therian group or algebra. A direct limit of a direct system of n generated �nite
partial subalgebras of A such that all products of generators eventually appear in
these partial subalgebras, is called a limit algebra over A: It is intersecting to study
limits of free semigroups.

Lemma 19. Let (G;S) be a marking of a �nitely presented groups. There exist
a neighborhood of (G;S) containing only marked quotients of (G;S) :

Remark 41. If there is a �nite number of relations on the limit we get �nite
number of relations. Then all this relations but a bit more still which are still
relations will be in the quotient space.

Corollary 9. A �nitely presented group which is a limit of the set of �nite
groups is residually �nite.

Conjecture 2. Describe the closure of the set of �nite groups in Gn:

Definition 74. Ultra�lter U is a mapping

f : P (N)! f1; 0g ;

such that if

A \B = ?;
then

f (A) + f (B) = f (A [B) ;
f (N) = 1:

So is an additive measure.

Definition 75. Ultraproduct of Gi; i 2 I andY
Gi= �

then

fgig � fhig ;
if

gi = hi;

for all i 2 U .

Theorem 65. (Los) Let G be a group and �G an ultrapower of G for nonprin-
cipal ultra�lter. Then G and �G have the same elementary theory.
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Example 105. Let G be a residually �nite group, G = hS;Ri : Let Bn (S) be a
ball of radius n in the Cayley graph Cay (G) : Let Gn be a �nite group where Bn (S)
is mapped monomorphically, G is a limit of hGn; S'ni ;

' : G! Gn:

If g 2 G and g 6= 1; jgj = n; then g'm 6= 1 in Gm; m > n: So g is nontrivial in the
limit.

Remark 42. If H � G; then Th8 (G) � Th8 (H) :

Remark 43. If G =�
Y

F; where H � G; then Th8 (H) � Th8 (F ) :

Theorem 66. Groups universally equivalent to K are subgroups of �
Y

F:

Theorem 67. (Uni�cation theorem 2 with coe¢ cients) Let G be a �nitely gen-
erated group containing a free non abelian group F as a subgroup. Then the follow-
ing conditions are equivalent:

(1) G is F discriminant by F:
(2) G is universally equivalent to F (in the language with constants).
(3) G is the coordinate group of an irreducible variety over F:
(4) G is Sela�s limit group.
(5) G is a limit of free groups in Gromov- Hausdor¤ metric.
(6) G F - invariant into an ultrapower of F:
(7) G is a limit of free groups in Gromov- Hausdor¤ metric.
(8) G embeds into an ultrapower of free groups.

Remark 44. The equivalence (2) , (6) is a particular case of general results
in model theory.

Proof. (5), (6) It is shown by Christopher Champetier, and Vincent Guirardel
(Limit groups as limits of free groups) that a group is a limit group i¤ it is a �nitely
generated subgroup of an Ultraproduct of free groups, for a non principal ultra�lter,
and any such Ultraproduct of free groups contains all the limit groups.

(5) =) (6) :
Let (Gk; Sk) ! (G;S) (k !1) ; let ! be any nonprincipal ultra�lter. Let

Gk = F: Then we have
G ��

Y
!

(Gk) :

Consider S = fs1; � � � ; skg ;

(1.1) ' : si !
�
s
(k)
i

�1
i=1

:

We need to show (1:1) is an embedding.
Monomorphism Take a nontrivial element in G, say g 2 G; then g 6= 1 in Gn

then the corresponding element in non trivial only in �nite set of Gk�s on the sets
of measure zero.

Homomorphism The neighborhood of G are quotients. Therefore all the com-
ponents of the direct product are quotients.

(6) =) (5) :
Let

G ��
Y
!

(Fk) = H
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we are going to take the images. Let Gk � Pk (H) ; where Pk (H) is a subgroup
into the projection of the Ultraproduct. Take

si !
�
s
(k)
i

�
;

and Gk =
D
s
(k)
1 ; � � � ; s(k)i

E
; then (G;S) is the limit of

�
Gk;

�
s
(k)
1 ; � � � ; s(k)i

��
: �

Proposition 11. Let G be a fully residually free group. Then G possesses the
following properties

(1) Each Abelian subgroup of G is contained in a unique maximal �nitely
generated Abelian subgroup, in particular, each Abelian subgroup of G is
�nitely generated.

(2) G is �nitely presented, and has only �nitely many conjugacy classes of its
maximal non cyclic Abelian subgroups.

(3) G has solvable word problem.
(4) Every 2 generated subgroup of G is either free or Abelian.
(5) G is linear.
(6) If rank (G) = 3 then either G is free of rank 3; free Abelian of rank 3; or

a free rank one extension of centralizer of a free group of rank 2; this is
G = hx; y; tj [u (x; y) ; t] = 1i ; where the word u is not a proper power.

Proof. OF (5) : Then we have

Gfg � SL2

 
�
Y
!

Z

!
�

Proof. The Ultraproduct of SL2 (Z) is SL2 (�Z) ; where �Z is the Ultraprod-
uct of Z: Indeed, the direct product

Y
SL2 (Z) is isomorphic to SL2

�Y
Z
�
:

Therefore, one can de�ne a homomorphism from the Ultraproduct of SL2 (Z) onto
SL2 (

�Z) : Since the intersection of a �nite number of sets from an ultra�lter again
belongs to the ultra�lter, this epimorphism is a monomorphism. Being �nitely
generated G embeds in SL2 (R) ; where R is a �nitely generated subring in �Z:
Then

Gfg � SL2 (R) ;
and R is f:g: subring in �Z:Y

SL2 (Z)! SL2

�Y
Z
�
! SL2

 
�
Y
!

Z

!
;

then ' �  ; de�nesY
SL2 (Z)! �

Y
SL2 (Z)

'� ! SL2

 
�
Y
!

Z

!
:

�

Theorem 68. [Announced by Louder] There exist a function g (n) such that the
length of every proper descending chain of closed sets in Fn is bounded by g (n) :
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Equationally Noetherian property: Every proper decreasing sequence of irre-
ducible varieties is �nite in Fn: Suppose we have S (x1; � � � ; xn) = 1; irreducible.
Then if s1; s2 are irreducible then you cannot do it more then g (n)- times.

2. Description of solutions

Theorem 69. [Razborov] Given a �nite system of equations S (X) = 1 in
F (A) there is an algorithm to construct a �nite solution diagram that describes all
solutions of S (X) = 1 in F:

Factor sets, letG = hXjSi : LetG be a f:g: group we want to studyHom (G;F ) ;
we can always think as Hom (G;F ) is in 1 � 1 correspondence with solutions of
systems of equations S (X) = 1; for all Hom

�
FR(S); F

�
:

Theorem 70. 8f:g group G 9 a �nite set of proper limit quotients of Gi; �
L1; � � � ; Lk � 8' 2 Hom (G;F ) 9 � 2 Aut (G) ; and

 i : L! F;

such that ' =  � �: This is
�x
G = FR(S)

�1 . & �k
x
L1 � � � Li � � � Lk
.#&

the diagram is �nite.

For free groups the diagram is algorithmically.
Solution diagram is

FR(S)
. &
�1y

FR(
V1)
� � � FR(
VN )

. &
FR(
V21)

� � � FR(
Vm )

.&
� � �

F (A) � F (T )
#

F (A)

Conjecture 3. In the Hyperbolic group it is not known, if we can construct
such diagram algorithmically
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Example 106. B2;3 =


a; tjt�1a2t = a3

�
is not equationally Noetherian, con-

sider
S =

n
f
h
x�y

n

; z
i
= 1jn = 1; � � �

o
;

the system of equations. This triples

x = a3
n

; y = t; z = a:

Solves
Sl =

nh
xy

�i
; z
i
= 1ji = 1; � � � ; n

o
;

but not S:
Why? Take t�1a2t = a3; then

ta3t�1 = a2;

t

n timesz }| {
a3 � � � a3 t�1 =

n timesz }| {
a2 � � � a2

ta3
n

t�1 = a2
n

:

By induction if i = n+ 1; then h
ta2

n

t�1; a
i
6= 1:

Then ta�2
n

t�1a�1ta2
n

t�1a 6= 1; and t�1a2t = a3; with ta3t�1 = a2: Therefore it
does not commutes. Then any subsystem is not equivalent to the whole system.

Definition 76. A group is Hop�an if any epimorphism of � : G ! G is an
isomorphism.

Example 107. B (2; 3) =


a; bjba2b�1 = a3

�
is non Hop�an. This is there exist

an epimorphism

� : a! a2;

� : b! b;

with nontrivial kernel. This is
�
bab�1; a3

�
2 ker �: To see this we have�

bab�1; a3
�
= bab�1a3

�
bab�1

��1 �
a3
��1

= bab�1
�
ba2b�1

� �
bab�1

��1 �
ba2b�1

��1
= ba3a�1a�2b�1 = 1:

Theorem 71. (Kharl, Mias, ra) Suppose H is not free. Then there is a �nite
set S = fs : H � Hsg of proper epimorphisms such that:

123
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(1) for all h 2 Hom (H;F) ; there exists a 2 Aut (H) such that h � a factors
through S:

H ! H
# s # h
Hs ! F

where Hs is the proper qoutient.
(2) We will re�ne this statement and discuss a proof.

1. Real trees

Definition 77. A real tree (T; dT ) is a metric space such that between any two

points t; t
0 2 T; there is a unique arc: (the image of an embedding � :

h
x; x

0
i
! T;

with � (x) = t and �
�
x
0
�
= t

0
)

from t to t
0
and this arc is the image of an isometric embedding of an interval.

Example 108. If we assign length to the interval we have a real tree.

Which is not a countable, why? Because [0; 1] is not countable. We can get an
in�nite tree by adding intervals. Recall that if the group is �nitely generated then
the tree is �nitely generated. This is G acts on T by isometry,

' : G! Isom (T ) :

Example 109. A �nite simplicial real tree is a �nite tree with each edge iden-
ti�ed with an interval.

Example 110. A countable increasing union of �nite simplicial real trees.

Example 111. 0�hyperbolic spaces embed into real trees.
Definition 78. If g 2 G;G 	 T; then the translation length

kgk = min fd (x; gx)g
x2T

;

g is elliptic if kgk = 0: Otherwise g is hyperbolic.
Theorem 72. If g is elliptic, then there exists Ag a closed subtree of �xed

points for g:

Definition 79. A closed subtree is the intersection of closed intervals in T
with T�; i.e.

T� \ f closed intervals in Tg = closed interval.
Example 112. (0; 1) is open in R:
Proof. of theorem (72) : Set Ag of �xed points is non-empty. If g �xes p1; p2

in T; it �xes geodesics between then, this implies that Ag is a subtree, and obviously
closed. �
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2. Isometries of real trees

Remark 45. An isometry � of a real tree T is either elliptic or hyperbolic.

Remark 46. Elliptic � �xes a point of T . The axis of � is Fix (�) :

Remark 47. Hyperbolic � leaves invariant an isometrically embedding R (its
axis A�). Points on A� are translation by

lT (�) := min fdT (t; � (t)) jt 2 Tg :

Lemma 20. If T1; T2 with T1 \ T2 = ?; are subtrees of T then there exists a
unique arc  �; where  = [x; y] ; where x is the initial point and y is the �nal point.
Let x 2 T1 and y 2 T2; then

 \ T1 = x; and  \ T2 = y:

Then  is called a bridge.

Proof.

Take an arbitrary points x in T1 and y in T2: Let � be a geodesic joining them. Let

 = �� T1 � T2:

Take � so that

 \ T1 = x; and  \ T2 = y:

Then �1� is a geodesic =[x; x1] and not in T2 =)(= since T2 is a subtree. �

By this lemma we have

Corollary 10. Let g 2 G be elliptic x 2 T; [x; p] the bridge from x to Ag then

d (x; gx) = 2 j[x; p]j :
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Consider

Why? Since j[x; p]j ; we know where the interval is send, and

j[x; p]j = j[gx; p]j ;

because g is an isometry.

Theorem 73. If kgk > 0: Then 9 Ag a linear subtree and

Ag = fpjd (p; gp) = kgkg ;

axis of g: Also g acts on Ag by translation through kgk :For any x 2 T

d (x; gx) = kgk+ 2 j[x; p]j ;

where [x; p] is the bridge between x and Ag:Then Ag is isometric to R:

Remark 48. Linear means that every three points are collinear. I.e.

Definition 80. By a Gromov product we mean

we write (y � z)x = common beginning of [x; y] z [x; z] :
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Proof. of theorem (73) : Take x 2 T: Let p =
�
g�1x; gx

�
x
be a Gromov

product,

Then

Ag =
1[

i=�1

h
pg

i

; pg
i+1
i
;

if we take another point y there is a bridge. Where�
g�1p; p

�
\ [p; gp] = fpg :

Then g acts on Ag acts by translations,

For y =2 Ag we have
d (y; gy) = 2d (y; p) + d (p; gp) ;

where d (y; p) is the bridge. Therefore Ag is the axis, and hence isometric to the
real line �

We will be interested in isometric actions of a �nitely generated group H on T:
The H tree T is minimal if T contains no proper invariant H subtrees.

Lemma 21. If H is �nitely generated and T is a minimal H tree, then T is
either a point or the union of he axes of the hyperbolic elements of H:

3. Spaces of real trees.

Let A (H) be the set of isometry classes of non- trivial minimal H- trees.
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Definition 81. Gromov topology:

lim f(Tn; dn)g = (T; d) ;
i¤ for all �nite K � T; � > 0; and �nite P � H (P is a �nite subset) there are, for
all large n; subsets Kn of Tn and bijections

fn : Kn ! K;

such that
jd (�fn (sn) ; fn (tn))� dn (�sn; tn)j < �;

for all sn; tn 2 Kn and � 2 P:

Intuitively, large and larger pieces of the limit tree with their restriction actions
(approximately) appear in nearby trees. This is H - f.g. group and Hom (H ! F ) :
If 'n 2 Hom (H;F ) : H acts on Cay (F ) through 'n: If 8h 2 H;x 2 Cay (F ) ;
h (x) = h'nx = 'n (h (x)) :

Example 113. The Cayley graph of free group is a tree. If H = hg1; � � � gki ;
then

where

k'nk =
1X
i=1

��g'ii �� ;
since we are considering the projectivized space, de�ne by

kgk'n =
kgk

1X
i=1

��g'ii �� ;
which is a metric. An take

�
T; kgk'n

�
as representative.

IF � 2 H �xes a point in T'n then

'n (�) = 1:

Then ker (Tn) = ker (h) :
We are interested in projectivized spaces of non-trivial H- trees, i.e.,

(T; d) � (T; �d) ;
for � > 0:

PA (H) := A (H)
(0;1) :
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Also nontrivial h 2 Hom (H;F) gives an action of H on the Cayley tree for F and
so determines Th 2 PA (H) : Since the Cayley tree is a free F - tree, if � 2 H �xes
a point in Th; then h (�) = 1: In particular ker (Tn) = ker (h) : And Th and Ti��h
are isometric where i� denotes conjugation by � 2 F.

Theorem 74. (Paulin, Culler-Morgan). Let fhig be a sequence in Hom (H;F) :
Then fThig has a convergent subsequence in PA (H) :

Such limits have nice properties.

Definition 82. An Htree T is super stable if the following property holds: If
J � I are non-degenerate arcs with FixT (I) non-trivial, then

FixT (J) = FixT (I) :

Remark 49.
Stab (J) = Stab (I) ;

if is nontrivial.

Remark 50. An H -tree T is very small if it is nontrivial (i.e. not a point),
minimal, non-degenerated tripod stabilizers are trivial.

Proposition 12. Suppose fhig is a sequence in Hom (H;F) ; no hi has cyclic
image, and

T = limThi :

Then:
(1) T is irreducible (i.e. not linear and no �xed end).
(2) ker (T ) = kerhi���!; and
(3) T

ker(T ) is very small and super stable.

In particular, H
ker(T ) is a limit group.

Proof. We will show tripod stabilizers are trivial. The rest is similar. Assume
� stabilizes the endpoints of a tripod. Nearby Thi have tripods with endpoints
nearly stabilized by �: So, � �xes the cone point and hi (�) = 1: �

4. Shortening

Definition 83. Let H have a �xed �nite generating set S: For h 2 Hom (H;F) ;
khk := max jh (x)j

s2S
:

then
(1) h � h0 if h0 = i � h � a; where  2 F and a 2 Aut (H) :

a
x
H

h ## h
0

F
�
i

(2) h is shortest if h = min
h0

h�h0
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Theorem 75. (Shortening) Suppose H is f.g., freely indecomposable, and not
(Abelian) Z: If T = limThi where fhig is a sequence of shortest elements, then T
(real tree) is not faithful, (there are elements which are in the kernel of this action).

Theorem 76. (K �M � S) : Suppose H is f.g. and not free. Then there is a
�nite setS = fs : H � Hsg of proper epimorphisms such that:

(1) for all h 2 Hom (H;F) ; there exist a 2 Aut (H) such that h � a factors
through S .

Further, if H is not a limit group then we may always take a = idjH :

Proof. If H is not a limit group then there is a �nite set f�1; � � � ; �ng such
that every h 2 Hom (H;F) kills some �i: We may take

S =
�

H

hh�1ii
; � � � ; H

hh�nii

�
:

By Grushko, we may assume that H is freely indecomposiable. We may also assume
that H is non-Abelian. It is enough to show that there is S through which every
shortest h 2 Hom (H;F) factors. Suppose not. Let f�1; � � � �ig enumerate the
non-trivial elements of H: If

Si=
�

H

hh�1ii
; � � � ; H

hh�iii

�
;

then there is shortest hi that is injective on f�1; � � � �ig : A subsequence of fhig
converges to a faithful tree contradicting theorem ( Shortening) : �

Corollary 11. We may assume each Hs is a limit group.

5. Examples of factor sets

Example 114. The sets that appear in the theorem are called factors sets.
There are not many explicit examples.

Example 115. If H = H1 �H2; then

S (H) = S (H1) � S (H2)

= fs1 � s2jsi 2 S (Hi)g :

Example 116. S (Zn) = fs : Zn ! Zg :

Example 117. If H is a closed, orientable, genus g surface group and if

s : H ! Fg

represents the standard retraction of the surface onto a rank g graph, then

S (H) = fsg :

(Zieschang, Stallings) :

Example 118. Then non-orientable version is due to Grigorchuk and Kuchanov
and one map does not su¢ ce. Note: for n = 1; 2; or 3; nP is not a limit point group.

We need a better understanding of real trees. We will use foliated 2� complexes
to visualize real trees.
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Example 119. ( Triangle)

Each colored band is decomposed into parallel line segments with a transverse Lebesgue
measure.
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Chapter 12

1. JSJ decomposition, presentation by Alexander Taam

Definition 84. A splitting of a group G is a triple (G; (G (x) ; T ) ; �) ; where

� : G! � (G; T ) ;
is an isomorphism.

Definition 85. An elementary Z�splitting is a one edge splitting if
G = A �

C
B; or G = A�

C
;

with C ' Z:

Definition 86. The splitting is reduced if every vertex group of valery 1 or 2
properly contains images of incident edge groups.

Definition 87. Nondegenerate if at least one edge, and reduced.

Definition 88. If
G = A �

C
B;

and C � C1 � A then
G = A �

C1
B;

where
B1 = C1 �

C
B

is called a folding and inverse is unfolding.

Definition 89. If Di for i = 1; 2 are elementary splittings with edge group Ci;
if C1 is contained in a conjugate of either subgroup given by D2 say C1 is elliptic
with respect to D2 otherwise say it is hyperbolic.

Theorem 77. (Rips and Sela) Let G be freely indecomposiable. If Di; i = 1; 2
is one elementary Z� splitting of G with edge group C1 then C1 is elliptic with
respect to D2 i¤ C2 is elliptic with respect to D1:

Example 120. We can consider a hyperbolic-hyperbolic

133
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2. Quadratically Hanging subgroup

Let G be one order f.g. group. Let Q be a subgroup of G an we called Q a
quadratically Hanging if G has a Z splitting with Q is a vertex group for vertex r;
are incident edge groups or cyclic puncture subgroup of Q: Then Q admits one of
the following groups

(1)

*
p1; � � � ; pm; a1; � � � ; ag; b1; � � � ; bgj

gY
i=1

[ai; bi]
mY
k=1

pk

+
;

(2)

*
p1; � � � ; pm; a1; � � � ; agj

gY
i=1

a2i

mY
k=1

pk

+
; since is a quadratic equations we

should attain closed curves,
(3) For each edge e outgoing from v; Ge is conjugate to one of the hpki ;
(4) For each pk 9 ek outgoing from v � GeK conjugate to hpki :
Definition 90. We said maximal quadratic hanging subgroup if for every

elementary Z splitting D of G either Q is elliptic to D or edge group C of D; if it
can be conjugated into Q: Where D is inherited from splitting of Q along C: (Rips
and Sela).

Let H be a �nitely presented torsion free (Hyperbolic) group there exists a
reduced unfold Z splitting of H (called JSJ decomposition) �

(1) Every maximal QH subgroup can be conjugated into a vertex group.
(2) Every QH subgroup can be conjugated into a maximal QH subgroup.
(3) Every nonmaximal QH vertex group is elliptic in every Z splitting of H:
(4) If an elementary Z splitting with edge group C is hyperbolic with re-

spect to other elementary Z splitting then C can be conjugated into some
maximal QH subgroup.

Remark 51. JSJ "encodes" all splitting of groups: congenerated by splitting
along the curve in some QH subgroup and collapsing all other edges.

Example 121. Mod (G) � Aut (G) degenerated
Example 122. Denn twists of edges groups.

Example 123. Modular automorphism QH groups that �x incident edge groups
to conjugacy.

Example 124. Linear automorphism of Abelian vertex group that �x incident
edge groups.

Example 125. Inner automorphism.

JSJ is good to solve isomorphism for groups.

Theorem 78. Let G be a freely indecomposable limit group 9 �nite collection
of limit group quotients

� : L!Mj ; �
h : L! F;

for every homomorphism 9 some � 2Mod (G) ; and some j and also

Vj : Mj ! F �
h = vj � �j � �:



3. OPEN PROBLEMS 135

Remark 52. In general there is no canonical JSJ decomposition.

3. Open problems

(1) The Poincaré Conjecture holds i¤ every g � 2 epimorphism

' : Sg ! Fg � Fg;

factors through the free product

S1 � Sg�1:

Where Sg is the fundamental group of an oriented closed surface.

S1 � Sg�1
.
!

Sg
#

Fg � Fg

As reference see
� Stallings. How not to prove the Poincaré Conjecture
� Gregorchach- Kurchamoc. Some questions in group theory related
to geometry.

(2) If the equation

[[x; y] ; y; y; y; y; y] =

nY
i=1

z5i ;

does not have a solution in a free group for any n then B (2; 5) is in�nite.
This is

B (2; 5) =


a; bjx5 = 1;8x 2 B (2; 5)

�
:

(3) Bin packing is NP complete problem, let R = fr1; � � � ; rkg � N; �

kX
i=1

ri = NB:

If there exist a partition of R into B parts such that the sum of the
numbers is equal to N:



136 12. CHAPTER 12

The quadratic equation is equivalent to the bin packing problem

(~~)
�
an; bB

�
=

kY
i=1

x�1i [ar; b]xi;

this is a quadratic equation since x appears twice. The bin can be packed
#(~~) has a solution F (a; b) :Do this for hyperbolic groups.
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Chapter 13

1. The Coarse Geometric of Groups by Tim Susse.

Outline

(1) Groups as Geometric Objects.
(2) Quasi- isometries.
(3) Hyperbolicity and Hyperbolic Groups.

2. Groups as Geometric Objects.

Given a presentation of a group G = hSjRi we associate a geometric object
called the Cayley graph, denoted Cayley (G;S) :

Vertex Set = G

g1 � g2

i¤ there exists s 2 S[S�1 with g1 = g2s: Thus the Cayley graph of a group depends
on the choice of generating set.

Example 126. for Cayley
�
Z2; f(1; 0) ; (0; 1)g

�
:

Cayley
�
Z2; f(1; 0) ; (0; 1)g

�
:

137
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Example 127. for Cayley
� Z
7Z ; f1g

�
:

0

1

2

34

5

6

Cayley
� Z
7Z ; f1g

�
:

Example 128. of Cayley
� Z
7Z ; f2; 3g

�
:

Cayley
� Z
7Z ; f2; 3g

�
:

Example 129. of Cayley(Z; f1g) :

Cayley(Z; f1g) :
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Example 130. of Cayley(Z; f2; 3g) :

Cayley(Z; f2; 3g) :

Remark 53. You might notice that if you step really far back, or zoom out on
the graphic, the two Cayley graphs look very similar. We want to formalize and
take advantage of this.

3. Words metric on a group

Given a generating set S for G, we de�ne the distance between two points in
G to be their distance in the Cayley graph Cayley(G;S) : Again, this depends on
the choice of generating set. This metric dS is called the word metric on G:

Facts:

(1) For any g 2 G; dS (g; e) = lS (g) ; the word length of G:
(2) For any g; h 2 G; dS (g; h) = lS

�
g�1h

�
:

(3) G acts on (G; dS) by left multiplication, an isometry.
(4) Is S is a �nite generating set, closed balls are �nite, so (G; dS) is a proper

metric space. The converse is also true.

4. Quasi-isometries

Definition 91. (bi-Lipschitz equivalence) Given two metric spaces (X; dX)
and (Y; dY ) we say that a map

f : X ! Y;

is a k�bi-Lipschitz map if for any pair of points x1; x2 2 X we have
1

k
dX (x1; x2) � dY (f (x1) ; fx (2)) � kd (x1; x2) :

Remark 54. A bi-Lipschitz map is like a stretching of the metric at every
point (by bounded amounts). It is worth noting that a bi-Lipschitz map is always a
topological embedding.

A weaker notion of equivalence is a large scale or coarse bi-Lipschitz condition.
We call this a quasi- isometry.

Definition 92. We say that a map

f : X ! Y

is a (k; c)� quasi- isometric embedding if for every pair x1; x2 we have that
1

k
dX (x1; x2)� c � dY (f (x1) ; fx (2)) � kd (x1; x2) + c:

Further, if the map is coarsely onto (i.e. if every point in Y is distance at most
c from f (X) ; we call it a quasi-isometry). Quasi-isometry de�nes an equivalence
relation on metric spaces:
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(1) Clearly the identity map is an isometry, so any space is quasi-isometric to
itself.

(2) A quick computation shows that if f and g are quasi-isometrics, so is f �g:
(3) Symmetric is a little tricky.

To show symmetry we need to construct a coarse inverse of a quasi-isometry f:
By this we mean a quasi-isometry f�1 so that there exists a constant r with

dX
�
x; f�1 � f (x)

�
� r:

To construct the inverse, we �rst need some quick facts. If

f : X ! Y;

is a (k; c)� quasi- isometry, then it�s failure to be injective is bounded. In particular,
if f (x1) = f (x2) ; then

d (x1; x2) � kc:
To see this, look at the left side of the de�nition of quasi- isometry, i.e.:

1

k
dX (x1; x2)� c � dY (f (x1) ; fx (2)) = 0:

So up to a bounded diameter "error", for each y 2 f (X) ; we can choose g (y) = x;
where we choose some element x 2 f�1 (y) : For each element y =2 f (X), we note
that there exists some y

0 2 f (X) with

dY

�
y; y

0
�
� c:

Choose some y
0
with this property and let g (y) = x where x 2 f�1 (y) :

Remark 55. This function is well de�ned if we ignore these �nite diameter
"error". We call this sort of thing coarsely well de�ned.

Note: Why is the Quasi-isometry right?
Given a �nitely generated group G; there exist many �nite generating sets.

Proposition 13. Let S and T be two �nite generating sets of a group G; then
the identity map on G is a quasi- isometry

idG : Cayley (G;S)! Cayley (G;T ) :

Proof. Let S = fs1; � � � ; sng and T = ft1; � � � ; tmg : Since S generates
G there exists a shortest (geodesic) spelling of each ti in the language of S: In
particular, ti = s�11i ; � � � ; s

�k
ni ; where �i = �1: Let
K = max fk : lS (ti) = kg ;

i.e. the longest word length of a ti in Cayley(G;S) : Similarly, let L be the maximum
word length of the si in Cayley(G;T ) : Take g 2 G: Then say lS (g) = r; so

g = s1 (g) � � � sn (g) ;
where each si (g) 2 S [ S�1: Replace each of the si with their spellings in t; and
we see that

lT (g) � Kr:
Similarly, if lT (g) = r; then

lS (g) � Lr:
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So, for any g 2 G we get
1

K
� lT (g) � lS (g) � L � lT (g) :

However, for any g; h 2 G;
dS (g; h) = lS

�
gh�1

�
;

and similarly for T: So, this turns into a quasi-isometry. In fact, this is a bi-Lipschitz
equivalence. �

Remark 56. In our previous examples of Cayley graphs for Z we had K =
3; L = 2 for S = f1g and T = f2; 3g :

One of the fundamental tools in studying the coarse geometry of groups is the
following fact.

Theorem 79. (Milnor-Svarc Lemma) Let X be a proper metric space and let G
act on X geometrically (properly discontinuously and cocompactly by isometries).
Then G is �nitely generated and for a �xed x 2 X the orbit map g 7! gx is a
quasi-isometry.

The proof involves taking a closed ball K (which is compact, since X is proper)
that contains a fundamental domain for the action on X: Let

S = fs 2 G : K \ sK 6= ?g :
Since the action is properly discontinuous, this set is �nite. We would then show
that G = hSi by making a path from x 2 K to gx 2 gK for g 2 G by making
steps that are small enough that the corresponding translates of K intersect. These
correspond to elements of S: In doing this, the quasi-isometry bound fall out.

Consequences of the Milnor-Svarc Lemma:

(1) If G is a �nitely generated group and H � G and [G : H] < 1; then
H y (acts on) G by multiplication on the right. This action is cocom-
pact, so H is quasi-isometric to G: This is an example of what is called
commensurability (which is stronger the quasi-isometry).
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(2) If G = �1 (M) where M is a compact Riemannian manifold, then G

is �nitely generated and is quasi-isometric to fM . For instance �1 (S) ;
a closed hyperbolic surface group (� (S) < 0), is quasi-isometric to the
hyperbolic plane.

(3) In a similar vein, Zn is quasi-isometric to Rn:
There are many algebraic properties that have geometric content (i.e. are

quasi-isometry invariant). In particular:

(1) Having a �nite presentation is quais-isometry invariant.
(2) Having a �nite index free subgroup is a quasi-isometry invariant.
(3) Having two topological ends is equivalent to being virtually Z; so it is a

quasi-isometry invariant.
(4) Having one end is also a quasi-isometry invariant
(5) Having a �nite index nilpotent subgroup (virtual nilpotent) is equivalent

to having polynomial growth (this is Gromov�s Polynomial Growth The-
orem). The latter is a quasi-isometry invariant for groups.

5. Hyperbolicity and Hyperbolic Groups

Slim triangle property

Definition 93. We say that a metric space (X; d) is �� hyperbolic if for any
geodesic triangle [a; b; c] we have that

d ([a; b] ; [a; c] [ [b; c]) � c

and similarly for all other permutations of the letters. We call such a triangle ��
thin or slim.

Hyperbolicity is innately a statement about "large" triangles in a metric space.
In fact, any compact metric space is automatically hyperbolic with � equal to the
(�nite) diameter.

There are other, equivalent, notions of Hyperbolicity.
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(1) Rips proved that a space is �� hyperbolic if and only if every quadruple
of points a; b; p 2 X satisfy

hbjcip � min
n
hajbip ; hajcip

o
� �:

Where

hxjyip =
1

2
(d (x; p) + d (y; p)� d (x; y)) ;

is called the Gromov product.
(2) Bowditch proved in his paper on the curve complex that Hyperbolicity

can be formulated as a statement about coarse centers of triangles [Bo] :
(3) As the name suggests, the hyperbolic plane H, which we identify with the

complex upper half plane with the Riemannian metric

ds2 =
dx2 + dy2

y2
;

is
log
�
1 +
p
2
�
� hyperbolic.

Further, hyperbolic space in any dimension is hyperbolic.
(4) A tree (of any kind, including an R- tree) is trivially 0� hyperbolic, since

any triangle is actually a tripod.

Proposition 14. If f : X ! Y is a quasi-isometry and X is �� hyperbolic,
then Y is also hyperbolic.

To prove this proposition, we need to study the properties of quasi-isometric
images of geodesics.

(1) A geodesic is an isometric embedding of an interval.
(2) A (k; c)�quasigeodesic is a (k; c)� quasi-isometric embedding of an in-

terval.

Remark 57. If  is a geodesic in X and

f : X ! Y

is a (k; c)� quasi-isometric embedding, then f () is a (k; c)� quasigeodesic.

Quasi-isometry invariance

Definition 94. A function

e : N! R;
is called divergence function for a metric (length) space X if for every R; r 2 N and
any pair of geodesics

 : [0; a]! X;

and

0
h
0; a

0
i
! X;

with
 (0) = 

0
(0) = x;

we want to know if the geodesics are long enough. If

R+ r � min
n
a; a

0
o
;
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and

d
�
 (R) ; 

�
R

0
��
� e (0) ;

any path connecting  (R+ r) to 
0
(R+ r) outside B (x;R+ r) must have length

at least e (r) :

Example 131. The Euclidean plane has divergence e (r) = �r: As you might
think, divergence has to do with the size of the sphere of radius r:

You get a linear function.

Example 132. In an in�nite tree, the divergence is in�nite, since there is only
one path between two points. This is called a cut point.

Example 133. H2 has an exponential divergence function, this can be �gured
out by computing the circumference of a circle of Euclidean radius r centered at 0
in the disc model.

Example 134. Is this also true in other hyperbolic spaces?
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Theorem 80. If X is a �� hyperbolic metric space, then it has an exponential
divergence function.

Proof. Fix R; r 2 N: Let  and 0 be two geodesics based at some point x 2 X
with

d
�
 (R) ; 

�
R

0
��

> �;

and set e (0) = �: Let p be a path in XnB (x;R+ r) from  (R+ r) to 
0
(R+ r)

and let � be the geodesic from  (R+ r) to 
0
(R+ r) : Now let m be the middle

point on the path p and let �� be the geodesic from  (R+ r) to m� and �1 the
geodesic from m to 

0
(R+ r) :

Now, for any binary string b; let mb be the midpoint of the segment of p between
the endpoints of �b� be the geodesic between the beginning of �b and mb and �b1
the geodesic between mb and the end of �b: Keep subdividing p in this way until
each segment in the division has length between 1

2 and 1: If n is the number of
pieces, then

log2 l (p) � n � log2 (l (p) + 1) :
For each b; the segments �b; �b� ; �b1 form a geodesic triangle, and so are �� slim.
Since

d
�
 (R) ; 

0
(R)
�
> ;

there exists a point v (0) on � with

d (v (0) ;  (R)) < �:

Continuing inductively, we can �nd v (1) on � [ �1 with

d (v (0) ; v (1)) � �:

And so if v (i) is on �b we �nd v (i+ 1) on either �b� or �b1 with

d (v (i) ; v (i+ 1)) < �:
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Let v (m) be the point obtained at the level of iteration. There is a point y 2 P
whose distance from v (m) is at most 1 and so its distance from x is at most

R+ � log2 (l (p)) + 2:

But

d (x; P ) � R+ r;

so

R+ r � R+ � log2 (l (p)) + 2;

this is l (p) is at least exponential r: Where l (p) > 2
r�2
� this is the exponential

divergence function. �

Proposition 15. Let  be a (k; c)� quasigeodesic with end points x and y and
let [x; y] denote a geodesic (not necessary unique) connecting x to y: Then, there
exists M = M (k; c; �) so that the Hausdor¤ distance between  and [x; y] is less
than M: In particular,  is in the M� neighborhood of the geodesic between its
endpoints.

Proof. The proof of this is an application of the theorem from the previous
theorem.

�

Corollary 12. If X is a �� hyperbolic space and

f : Y ! X

be a (k; c)� quasi-isometry, then Y is k (2M + �) + c� hyperbolic.
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Proof. Let a; b; c 2 Y and let [a; b; c] be some geodesic triangle in Y and
consider its image f ([a; b; c]) in X:

Well f ([a; b]) is a quasi-geodesic, so it is in the M� neighborhood of a geodesic
[f (a) ; f (b)] and similarly for [b; c] and [a; c] : Take a point x 2 f ([a; b]) : Let y 2
f ([a; b]) be such that

d (x; y) < M

and let z 2 [f (b) ; f (c)][ [f (a) ; f (c)] be such that

d (x; y) < �:

Further more, there exist w 2 f ([b; c]) [ f ([a; c]) such that

d (z; w) < M:

So,

d (x;w) < 2M + �:

Since f was a quasi-isometry, and x and w are in the image of f; their preimages
on the triangle [a; b; c] are most K (2M + �) + C apart. Thus the triangle in Y is
slim. �
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Remark 58. Corollary 12 shows us that it makes sense to talk about a �nite
group being hyperbolic. If we transition between �nite generating sets, the Cayley
graphs are quasii-isometric, so if one is hyperbolic, so is any other.

Example 135. If M is a closed hyperbolic manifold (i.e. fM is isometric to
Hn), then �1 (M) is ��hyperbolic. (This is a consequence of the Milnor-Svarc
Lemma).

Example 136. Given a hyperbolic group G; a subgroup H is quaisconvex if and
only if the inclusion map

H ,! G;

is a quasi-isometric embedding.

Example 137. In a hyperbolic group, if g 2 G is in�nite order, then the cen-
tralizer of g is quasiconvex.

Example 138. No hyperbolic group contains as Z2 subgroup. In fact, it cannot
contain a Baumslag-Solitar subgroup,


a; bjb�1amb = an
�
:

Example 139. (Gromov) If G satis�es the small cancellation condition C
0 � 1

6

�
;

then G is hyperbolic.

Definition 95. Let G = hSjRi : We say that the presentation is a Dehn pre-
sentation if for any reduced word w with w = 1 in G; there exists a relator r 2 R
so that r = r1r2;

l (r1) > l (r2) ;

and
w = w1r1w2:

In other words, any word that represents the identity in G contains more than
one half of a relator, and so it can be shortened. A word which cannot be further
reduced or shortened by this method (replacing r1 by r

�1
2 ; a shorter word) is called

Dehn reduced.
If G has a �nite Dehn presentation (G is �nitely generated, R is �nite) then

you can check all subwords of length at most

N = max fl (r) jr 2 Rg ;
to see if a reduction can be made. This procedure for solving the word problem is
called Dehn�s Algorithm, originally created by Max Dehn in 1910 to solve the word

problem in surface groups. Its run time is O
�
jwj2

�
in its simplest iteration. There

are atmost jwj �N subwords in each step, and at most jwj steps in the reduction.

Example 140. Let G = ha; b; c; dj [a; b] [c; d]i : Let R be the symmetrized set of
generators, so that R contains all cyclic conjugates of [a; b] [c; d] and its inverse.

What about other hyperbolic groups?

Definition 96. A path  in a metric space X is called a k� local geodesic if
every subpath of length k is a geodesic.

Example 141. On a sphere of radius 1; a great circle is a ��local geodesic.
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Example 142. If M is a Riemannian manifold, let r (M) be the injectivity
radius of M: Then any image of a ray in TXM under the exponential map is an
r (M)� loca lg eodesic:

Local geodesics have to do with loops in a metric space, or relations in a Cayley
graph. That makes them natural to study when considering presentations.

Lemma 22. Let G be ��hyperbolic group and let � be a 4��local geodesic. Let
g be the geodesic between the endpoints of  (called + and �). Assume

l (g) > 2�;

and let r and s be points on  and g respectively, both distance 2� from +: Then

d (r; s) � �:

The proof here is by induction on the length of  and uses the thin triangle
property multiple times.

Theorem 81. If  is a 4��local geodesic in a ��hyperbolic group G; then  is
contained in the 3� neighborhood of the geodesic between its endpoints.

We will use this theorem to create a shortening algorithm in our hyperbolic
group G:

Theorem 82. Let G be a �� hyperbolic group with generators S: Let R be equal
to the set of words

R = fw : w = 1 2 G; jwj < 8� and w represents the identity element in Gg :

We aim to show that hSjRi is a Dehn presentation for G: In particular G is
�nitely presented and has a solvable word problem.

Proof. Take a word w in the generators so that w = 1 in G: If the loop w
in the Cayley graph is already a 4� geodesic, then it is in the 3� neighborhood of
the origin, so it is already an element of R and we can see that it represents the
identity. Now say that w is not a 4� which is not a geodesic between its endpoints.
Replace it in w by the geodesic between its endpoints, call it w2: Then the path
w1w

�1
2 has length less than 8�; so that word is in R. Further, we note that w

contained w1; the longer part of the relator.
Now, we can continue this process until we reduced w to a 4��local geodesic,

a case we have already covered. Thus

G = hSjRi ;

is a Dehn presentation. �

6. Open questions

(1) [Gromov] Given a hyperbolic group G with one topological end (i.e. a
freely indecomposable hyperbolic group), does it contain a surface sub-
group?

(2) Are hyperbolic groups residually �nite?
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(3) [Bestvina] Say that G admits a �nite dimensional K (G; 1) and does not
contain any Baumslag- Solitar groups. Is G necessarily hyperbolic? If G
embeds in a hyperbolic group is this true? Note: Gromov proved that
every hyperbolic group admits a �nite dimensional K (G; 1) ; making this
question more natural than it seems.

(4) [Canary] Let H � G; G a hyperbolic group. If there exists some n so that
gn 2 H for every g 2 G; is H necessarily �nite index in G? The answer is
yes if H is quasiconvex.
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