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A bit of history

A chalkboard or blackboard is a reusable writing surface on which text or
drawings are made with sticks of calcium sulfate or calcium carbonate, known,
when used for this purpose, as chalk. Chalkboards were originally made of
smooth, thin sheets of black or dark grey slate stone. Modern versions are
often green because the colour is considered easier on the eyes [wiki].
The blackboard was invented by James Pillans, headmaster of the Royal High
School , Edinburgh, Scotland (1128). He used it with colored chalk to teach
geography. The chalkboard was in use in Indian schools in the 11th century.
The term ”blackboard” dates from around 1815 to 1825 while the newer and
predominantly American term, ”chalkboard” dates from 1935 to 1940.
The chalkboard was introduced into the US education system in 1801.
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Definition of function

Definition

A function f is a rule which assigns to each x in a set X exactly one element

f (x) in a set Y .

The usual notation is
f : X −→ Y .

For each x ∈ A (viewed as a variable), the element f (x) ∈ Y is called the
image of x . X is called the domain of f (denoted X = Dom(f )) and the set of
images of all x ∈ X is called the range or image of f (denoted Range(f )).
The graph of f is the set of pairs

Graph(f ) = {(x , f (x)) | x ∈ Dom(f )}

which can be viewed as a subset of the real plane R
2.
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Definition of function

Example

Dom(f ) = {0, 1, 2}, Range(f ) = {−1}, f (0) = f (1) = f (2) = −1.
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Definition of function

Example

Dom(f ) = {0, 1, 2}, Range(f ) = {−1}, f (0) = f (1) = f (2) = −1.

Fact (Vertical Line Test)

A set of points S in R
2 is the graph of a function if and only if no vertical line

passes through two distinct points in S.
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(a) f (x) = 1
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Representations of functions

A complete representation includes the domain, the set, where the function
takes its values, and the rule of assignment.

Usually, only a rule of assignment is given which is an algebraic expression, so
the domain is a set of reals, where this expression makes sense.

Example

(a) f (x) = 1
x2−1

,

(b) f (x) =
√
x2 − x .
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Absolute value

Recall,

|a| =
{

a, if a > 0,
−a, if a < 0.

The absolute value |a| is the distance from a to zero on the real line. Hence,
|a| > 0 for any a.
The simplest properties of absolute value include the following:

|ab| = |a||b|,
∣

∣

a

b

∣

∣ = |a|
|b|

,

|a + b| 6 |a|+ |b|.
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Representations of functions

A piece-wise definition of a function may include several algebraic expressions
applied depending on the input.

Example

f (x) =

{

1− x , if x 6 1,√
x − 1, if x > 1.
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A function f is called even if f (−x) = f (x) for every x ∈ Dom(f ) ( −x must
also belong to the domain). A function f is called odd if f (−x) = −f (x) for
every x ∈ Dom(f ).

Example

(a) f (x) = x2 + 1,

(b) f (x) = x3 − 2x .

The only function which is both even and odd is a zero function.
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Some properties of functions

A function f is called increasing on an interval I if f (x1) < f (x2), whenever
x1 < x2 in I .

A function f is called decreasing on an interval I if f (x1) > f (x2), whenever
x1 < x2 in I .
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Linear functions

Each linear function can be written in the form f (x) = mx + b, where
m, b ∈ R. The graph of f (x) is a straight line with the slope m and the
y-intercept (0, b).

Quadratic functions

Each quadratic function can be written in the form f (x) = ax2 + bx + c,
where a, b, c ∈ R. The graph of such a function is a parabola which opens
either upward (if a > 0), or downward (if a < 0). The x-intercepts of this
parabola are solutions of the equation ax2 + bx + c = 0.
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x

y
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α=2

4

is evenα

x

y

O

α=

α=3

5

is oddα

The domain of xα in this case is the whole real line.
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=
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, n is oddα= 1
n

n

n

Observe that
x

1
n = n

√
x ,

hence, the domain of x
1
n is the interval [0,∞) in the case when n is even,

and the whole real line in the case when n is odd.
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Power functions

(c) if α = −1 then the graph is the following curve called hyperbola

x

y

O

α = −1

The domain of f (x) = x−1 is all real numbers except for x = 0.
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Polynomial functions

Each polynomial function has the form

P(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0,

where a0, . . . , an ∈ R, an 6= 0 are called the coefficients of P(x), n ∈ N is
called the degree of P(x). Each polynomial of degree n may have not
more than n x-intercepts.

Rational functions

Each rational function has the form

f (x) =
P(x)

Q(x)
,

where P(x) and Q(x) are polynomials. We have

Dom(f ) = {x ∈ R | Q(x) 6= 0}.
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Angles are measured in degrees or in radians (abbreviated as rad). Radian
measure of an angle subtended by a circular arc is the length of the arc divided
by the radius of the arc. That is, for any angle θ, its measurement in radians is
s

r
, where s is the length of the enclosed arc and r is the radius of the arc.

Hence, one radian is the angle subtended by an arc of length equal to the
radius.

r

r

r
1 rad
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For the angle 360◦ the length of the corresponding arc (full circumference) is
2πr , so

360◦ =
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2πr
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)

rad = 2π rad.

Since π = 3.1415 . . . then

1 rad =
360◦

2π
≈ 57◦, 1◦ =

2π

360◦
rad ≈ 0.017 rad.

Hence, for an angle θ, the degree measure of θ multiplied by 2π
360

gives the
radian measure of θ, while the radian measure of θ multiplied by 360

2π
produces

the degree measure of θ.
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Example

(a) Find the radian measure of 60◦.

(b) Express 5π
4

rad in degrees.

Remark

In Calculus we use radians to measure angles except when otherwise indicated.
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Angles

The standard position of an angle occurs when we place its vertex at the origin
of a coordinate system and its initial side on the positive x-axis. A positive
angle is obtained by rotating the initial side counterclockwise, a negative angle
is obtained by clockwise rotation as shown below.

x

y

O

θ

initial side

terminal side

> 0

x

y

O θ

initial side

terminal side

 < 0

Notice that different angles θ1 and θ2 can have the same terminal side. It
happens when θ1 − θ2 = 2πn, n ∈ N.
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Example

Find the exact trigonometric ratios for

(a) θ = π

6
,

(b) θ = − 2π
3
.
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sin
π

4
=

1√
2
, sin

π

6
=

1

2
, sin

π

3
=

√
3

2

cos
π

4
=

1√
2
, cos

π

6
=

√
3

2
, cos

π

3
=

1

2

tan
π

4
= 1, tan

π

6
=

1√
3
, tan

π

3
=

√
3

24 / 55



Trigonometric functions

sin
π

4
=

1√
2
, sin

π

6
=

1

2
, sin

π

3
=

√
3

2

cos
π

4
=

1√
2
, cos

π

6
=

√
3

2
, cos

π

3
=

1

2

tan
π

4
= 1, tan

π

6
=

1√
3
, tan

π

3
=

√
3

Example

If cos θ = 2
5
and 0 < θ < π

2
, find the other five trigonometric functions of θ.
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A trigonometric identity is a relationship among the trigonometric functions.

The following identities follow immediately from definition

csc θ =
1

sin θ
, sec θ =

1

cos θ
, cot θ =

1

tan θ

tan θ =
sin θ

cos θ
, cot θ =

cos θ

sin θ

The next identity is called the main trigonometric identity

sin2 θ + cos2 θ = 1

which comes from the Pythagorean Theorem.
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tan2 θ + 1 = sec2 θ, 1 + cot2 θ = csc2 θ.

The following identities follow easily from the definition of sin and cos:

sin(−θ) = sin θ, cos(−θ) = cos θ

sin(θ + 2π) = sin θ, cos(θ + 2π) = cos θ
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Trigonometric identities

The subtraction formulas

sin(θ − φ) = sin θ cosφ− cos θ sinφ

cos(θ − φ) = cos θ cosφ+ sin θ sinφ

tan(θ − φ) =
tan θ − tanφ

1 + tan θ tanφ

can be obtained from the addition formulas by replacing φ by −φ in the
addition identities.

28 / 55



Trigonometric identities

29 / 55



Trigonometric identities

If θ = φ then we get the double-angle formulas:

29 / 55



Trigonometric identities

If θ = φ then we get the double-angle formulas:

sin 2θ = 2 sin θ cos θ, cos 2θ = cos2 θ − sin2 θ

29 / 55



Trigonometric identities

If θ = φ then we get the double-angle formulas:

sin 2θ = 2 sin θ cos θ, cos 2θ = cos2 θ − sin2 θ

Finally, using the main trigonometric identity sin2 θ + cos2 θ = 1 in the
double-angle formulas we get

29 / 55



Trigonometric identities

If θ = φ then we get the double-angle formulas:

sin 2θ = 2 sin θ cos θ, cos 2θ = cos2 θ − sin2 θ

Finally, using the main trigonometric identity sin2 θ + cos2 θ = 1 in the
double-angle formulas we get

cos2 θ =
1 + cos 2θ

2
, sin2 θ =

1− cos 2θ

2
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Trigonometric identities

Example

Prove the identity cos 3θ = 4 cos3 θ − 3 cos θ.

30 / 55



Equations

31 / 55



Equations

Example

(a) Find all values of θ which satisfy the equation 2 cos θ − 1 = 0.
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Equations

Example

(a) Find all values of θ which satisfy the equation 2 cos θ − 1 = 0.

(b) Find all values of θ in the interval [0, π] which satisfy the equation
2 cos θ + sin 2θ = 0.
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The graph of sin x is shown below.
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2

π

π
2

3

π2 π
2

5 π3ππ
2

3
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−1

1

sin x

Observe that | sin x | 6 1 and sin x = 0 only when x = nπ, n ∈ Z. The domain
of sin x is the whole real line.

32 / 55



cos x

33 / 55



cos x

The graph of cos x can be obtained from the graph for sin x by shifting by an
amount of π

2
to the left.
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The graph of cos x can be obtained from the graph for sin x by shifting by an
amount of π

2
to the left. Again, | cos x | 6 1 and cos x = 0 only when

x = nπ + π

2
, n ∈ Z.
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The domain of cos x is the whole real line.
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tan x

The graph of tan x is shown below.
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This function is unbounded and its domain excludes points nπ + π

2
, n ∈ Z.
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The graph of cot x is shown below.
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The graph of cot x is shown below.
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cot x

The graph of cot x is shown below.
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cot x
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The function is also unbounded and with the domain excluding points
nπ, n ∈ Z.
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History of trigonometry

Sumerian astronomers introduced angle measure. The first trigonometric table
was apparently compiled by Hipparchus, who is known as ”the father of
trigonometry”. Driven by the demands of navigation and the growing need for
accurate maps of large areas, trigonometry grew to be a major branch of
mathematics.

The Canadarm2 robotic manipulator on the International Space Station is
operated by controlling the angles of its joints. Calculating the final position of
the astronaut at the end of the arm requires repeated use of trigonometric
functions of those angles.

36 / 55



Transformations

37 / 55



Transformations

By applying certain transformations to the graph of a given function we can
obtain the graphs of certain related functions.

37 / 55



Transformations

By applying certain transformations to the graph of a given function we can
obtain the graphs of certain related functions.

Example:
Let y =

√
x − 2 + 3. We shift the graph of y =

√
x by 3 units upward and 2

units to the right.

37 / 55



Transformations

By applying certain transformations to the graph of a given function we can
obtain the graphs of certain related functions.

Example:
Let y =

√
x − 2 + 3. We shift the graph of y =

√
x by 3 units upward and 2

units to the right.

These transformations are called translations.

37 / 55



Transformations

38 / 55



Transformations

Next, let f (x) be a function and let c > 1.
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Transformations

Example

Sketch the graph of the function

(a) f (x) = −2
√
1− x − 2,

(b) f (x) = −x2 − 6x − 10.
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Exponents

Recall the laws of exponents. For a > 0, b > 0 and arbitrary x , y ∈ R we have:

a
0 = 1, a

−1 =
1

a
, a

−x =
1

ax

if x =
m

n
then a

x = a
m
n = n

√
am

a
x+y = a

x · ay , (ax)y = a
xy , (ab)x = a

x · bx ,
(

a

b

)x

=
ax

bx

Example

Using the laws of exponents simplify the expression

(

x2y2z5x−3

x3y2z−3

)−1
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An exponential function is a function of the form

f (x) = a
x ,

where a > 0.
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Exponential functions

An exponential function is a function of the form

f (x) = a
x ,

where a > 0. The domain of f (x) is the whole real line. Since ax > 0 for any
value of x , the graph of f (x) is above the x-axis and does not have
x-intercepts. The y-intercept is the point (0, 1) for any value of a.

x

y

O

1

y = ax

a >1

x

y

O

1

y = ax

a =1

x

y

O

1

y = ax

a <1
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Exponential functions

Example

Sketch the graph of the function g(x) = 3− 21−x .
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Inverse function

Given a function f we would like to find another function g which reverses the
action of f , that is, g(f (x)) = x for every x ∈ Dom(f ), and f (g(x)) = x for
every x ∈ Dom(g).

This is possible only if the function f is one-to-one, that is, f (x1) 6= f (x2)
whenever x1 6= x2.

If the graph of a function f is given then it is possible to find out if f is
one-to-one using the Horizontal Line Test:
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This is possible only if the function f is one-to-one, that is, f (x1) 6= f (x2)
whenever x1 6= x2.

If the graph of a function f is given then it is possible to find out if f is
one-to-one using the Horizontal Line Test: f is one-to-one if and only if no
horizontal line intersects its graph more than once.
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Inverse function

Example

Find out if the given function is one-to-one.

(a) f (x) = x2,

(b) f (x) = 1− 1
2x−1

.
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Inverse function

Now given a one-to-one function f with domain A and range B, the inverse

function f −1 has domain B, range A, and is defined by

f
−1(y) = x ⇐⇒ f (x) = y .

By definition we have

Dom(f −1) = Range(f ), Range(f −1) = Dom(f )

and

f
−1(f (x)) = x ∀x ∈ Dom(f ), f (f −1(x)) = x ∀x ∈ Dom(f −1).

x

f

f(x)

Dom(f) Range(f)

-1
f
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Inverse function

Fact

The graphs of f and f −1 are symmetric in the straight line y = x.
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Inverse function

Fact

The graphs of f and f −1 are symmetric in the straight line y = x.

Example

Given f (x) = x3, graph f −1(x).
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Inverse function

Given an algebraic expression for a function f (x), to find an algebraic
expression for f −1(x)

solve the equation y = f (x) for x in terms of y ,

to express f −1 as a function of x , interchange x and y , the resulting
equation is y = f −1(x).

Example

Find the inverse function of f (x) = 4x−1
2x−3

.
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Logarithms

If a > 0 and a 6= 1, the exponential function f (x) = ax is one-to-one.
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Logarithms

If a > 0 and a 6= 1, the exponential function f (x) = ax is one-to-one. Its
inverse function is called the logarithmic function with base a and is denoted by
loga x . By the characteristic property of the inverse function we have

loga x = y ⇐⇒ a
y = x

and
loga(a

x) = x for every x ∈ R

a
loga x = x for every x > 0.
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The graph of the logarithmic function is shown below
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The graph of the logarithmic function is shown below
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a >1

x

y

O

1

y = ax

a <1

1

log  xay = 

1
O

log  xay = 

By definition, the domain of loga x is the interval (0,∞) for every value of a.
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Logarithms

Example

Sketch the graph of f (x) = − log2(2− x).
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Logarithms

The following laws of logarithms follow from the corresponding properties of
exponents:
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Logarithms

The following laws of logarithms follow from the corresponding properties of
exponents:

loga(xy) = loga x + loga y , loga

(

x

y

)

= loga x − loga y

loga x
r = r loga x , for every r ∈ R

Example

Use the laws of logarithms to evaluate log2 80− log2 5.
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Logarithms

The logarithm with base e = 2.718281828... is called the natural logarithm and
has a special notation

loge x = ln x .
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Logarithms

The logarithm with base e = 2.718281828... is called the natural logarithm and
has a special notation

loge x = ln x .

In particular, ln e = 1.
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Logarithms

Example

Find all values of x satisfying the given equation
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Logarithms

Example

Find all values of x satisfying the given equation

(a) ln x = 2,

(b) e2x+3 − 7 = 0,
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Logarithms

Example

Find all values of x satisfying the given equation

(a) ln x = 2,

(b) e2x+3 − 7 = 0,

(c) ln x + ln(x − 1) = 1.
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Logarithms

In many cases it is convenient to change the base of the logarithm.

Suppose we want to write the logarithm loga x with a new base b.

Denote loga x = y . Hence, ay = x and by applying logb to both sides we get
logb a

y = logb x which implies y logb a = logb x and

loga x =
logb x

logb a
.
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