Calculus I, Review of Functions

Course web page: http://math.hunter.cuny.edu/olgak/calculus1fall.html
The classkey is: hunter 77578224
MATH 150 Fall 2012
(Olga Kharlampovich)

A chalkboard or blackboard is a reusable writing surface on which text or drawings are made with sticks of calcium sulfate or calcium carbonate, known, when used for this purpose, as chalk. Chalkboards were originally made of smooth, thin sheets of black or dark grey slate stone. Modern versions are often green because the colour is considered easier on the eyes [wiki]. The blackboard was invented by James Pillans, headmaster of the Royal High School, Edinburgh, Scotland (1128). He used it with colored chalk to teach geography. The chalkboard was in use in Indian schools in the 11th century. The term "blackboard" dates from around 1815 to 1825 while the newer and predominantly American term, "chalkboard" dates from 1935 to 1940. The chalkboard was introduced into the US education system in 1801.

Definition of function

Definition

A function f is a rule which assigns to each x in a set X exactly one element $f(x)$ in a set Y.

Definition

A function f is a rule which assigns to each x in a set X exactly one element $f(x)$ in a set Y.

The usual notation is

$$
f: X \longrightarrow Y
$$

Definition

A function f is a rule which assigns to each x in a set X exactly one element $f(x)$ in a set Y.

The usual notation is

$$
f: X \longrightarrow Y
$$

For each $x \in A$ (viewed as a variable),

Definition

A function f is a rule which assigns to each x in a set X exactly one element $f(x)$ in a set Y.

The usual notation is

$$
f: X \longrightarrow Y
$$

For each $x \in A$ (viewed as a variable), the element $f(x) \in Y$ is called the image of x.

Definition

A function f is a rule which assigns to each x in a set X exactly one element $f(x)$ in a set Y.

The usual notation is

$$
f: X \longrightarrow Y
$$

For each $x \in A$ (viewed as a variable), the element $f(x) \in Y$ is called the image of $x . X$ is called the domain of $f($ denoted $X=\operatorname{Dom}(f))$

Definition

A function f is a rule which assigns to each x in a set X exactly one element $f(x)$ in a set Y.

The usual notation is

$$
f: X \longrightarrow Y
$$

For each $x \in A$ (viewed as a variable), the element $f(x) \in Y$ is called the image of $x . X$ is called the domain of $f($ denoted $X=\operatorname{Dom}(f))$ and the set of images of all $x \in X$ is called the range or image of f (denoted Range (f)).

Definition

A function f is a rule which assigns to each x in a set X exactly one element $f(x)$ in a set Y.

The usual notation is

$$
f: X \longrightarrow Y
$$

For each $x \in A$ (viewed as a variable), the element $f(x) \in Y$ is called the image of $x . X$ is called the domain of f (denoted $X=\operatorname{Dom}(f))$ and the set of images of all $x \in X$ is called the range or image of f (denoted Range (f)). The graph of f is the set of pairs

$$
\operatorname{Graph}(f)=\{(x, f(x)) \mid x \in \operatorname{Dom}(f)\}
$$

which can be viewed as a subset of the real plane \mathbb{R}^{2}.

Definition of function

Definition of function

Example

$\operatorname{Dom}(f)=\{0,1,2\}$, Range $(f)=\{-1\}, f(0)=f(1)=f(2)=-1$.

Example

$\operatorname{Dom}(f)=\{0,1,2\}$, Range $(f)=\{-1\}, f(0)=f(1)=f(2)=-1$.

Fact (Vertical Line Test)

A set of points S in \mathbb{R}^{2} is the graph of a function if and only if no vertical line passes through two distinct points in S.

Representations of functions

A complete representation includes the domain,

Representations of functions

A complete representation includes the domain, the set, where the function takes its values,

Representations of functions

A complete representation includes the domain, the set, where the function takes its values, and the rule of assignment.

A complete representation includes the domain, the set, where the function takes its values, and the rule of assignment.

Usually, only a rule of assignment is given which is an algebraic expression,

A complete representation includes the domain, the set, where the function takes its values, and the rule of assignment.

Usually, only a rule of assignment is given which is an algebraic expression, so the domain is a set of reals, where this expression makes sense.

A complete representation includes the domain, the set, where the function takes its values, and the rule of assignment.

Usually, only a rule of assignment is given which is an algebraic expression, so the domain is a set of reals, where this expression makes sense.

Example

(a) $f(x)=\frac{1}{x^{2}-1}$,

A complete representation includes the domain, the set, where the function takes its values, and the rule of assignment.

Usually, only a rule of assignment is given which is an algebraic expression, so the domain is a set of reals, where this expression makes sense.

Example

(a) $f(x)=\frac{1}{x^{2}-1}$,
(b) $f(x)=\sqrt{x^{2}-x}$.

Absolute value

Recall,

$$
|a|= \begin{cases}a, & \text { if } a \geqslant 0, \\ -a, & \text { if } a<0\end{cases}
$$

Recall,

$$
|a|= \begin{cases}a, & \text { if } a \geqslant 0, \\ -a, & \text { if } a<0\end{cases}
$$

The absolute value $|a|$ is the distance from a to zero on the real line.

Recall,

$$
|a|= \begin{cases}a, & \text { if } a \geqslant 0, \\ -a, & \text { if } a<0\end{cases}
$$

The absolute value $|a|$ is the distance from a to zero on the real line. Hence, $|a| \geqslant 0$ for any a.

Recall,

$$
|a|= \begin{cases}a, & \text { if } a \geqslant 0, \\ -a, & \text { if } a<0\end{cases}
$$

The absolute value $|a|$ is the distance from a to zero on the real line. Hence, $|a| \geqslant 0$ for any a.
The simplest properties of absolute value include the following:

Recall,

$$
|a|= \begin{cases}a, & \text { if } a \geqslant 0, \\ -a, & \text { if } a<0\end{cases}
$$

The absolute value $|a|$ is the distance from a to zero on the real line. Hence, $|a| \geqslant 0$ for any a.
The simplest properties of absolute value include the following:

- $|a b|=|a||b|$,

Recall,

$$
|a|= \begin{cases}a, & \text { if } a \geqslant 0, \\ -a, & \text { if } a<0\end{cases}
$$

The absolute value $|a|$ is the distance from a to zero on the real line. Hence, $|a| \geqslant 0$ for any a.
The simplest properties of absolute value include the following:

- $|a b|=|a||b|$,
- $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$,

Recall,

$$
|a|= \begin{cases}a, & \text { if } a \geqslant 0, \\ -a, & \text { if } a<0 .\end{cases}
$$

The absolute value $|a|$ is the distance from a to zero on the real line. Hence, $|a| \geqslant 0$ for any a.
The simplest properties of absolute value include the following:

- $|a b|=|a||b|$,
- $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$,
$-|a+b| \leqslant|a|+|b|$.

Absolute value

Absolute value

Inequalities involving the absolute value usually have (unions of) intervals as solutions.

Inequalities involving the absolute value usually have (unions of) intervals as solutions.

Example

Solve the inequality $|x-5|<2$.

Inequalities involving the absolute value usually have (unions of) intervals as solutions.

Example

Solve the inequality $|x-5|<2$.

A piece-wise definition of a function may include several algebraic expressions applied depending on the input.

A piece-wise definition of a function may include several algebraic expressions applied depending on the input.

Example

$$
f(x)= \begin{cases}1-x, & \text { if } x \leqslant 1 \\ \sqrt{x-1}, & \text { if } x>1\end{cases}
$$

Some properties of functions

A function f is called even if $f(-x)=f(x)$ for every $x \in \operatorname{Dom}(f)(-x$ must also belong to the domain).

A function f is called even if $f(-x)=f(x)$ for every $x \in \operatorname{Dom}(f)(-x$ must also belong to the domain). A function f is called odd if $f(-x)=-f(x)$ for every $x \in \operatorname{Dom}(f)$.

A function f is called even if $f(-x)=f(x)$ for every $x \in \operatorname{Dom}(f)(-x$ must also belong to the domain). A function f is called odd if $f(-x)=-f(x)$ for every $x \in \operatorname{Dom}(f)$.

Example

(a) $f(x)=x^{2}+1$,

A function f is called even if $f(-x)=f(x)$ for every $x \in \operatorname{Dom}(f)(-x$ must also belong to the domain). A function f is called odd if $f(-x)=-f(x)$ for every $x \in \operatorname{Dom}(f)$.

Example

(a) $f(x)=x^{2}+1$,
(b) $f(x)=x^{3}-2 x$.

A function f is called even if $f(-x)=f(x)$ for every $x \in \operatorname{Dom}(f)(-x$ must also belong to the domain). A function f is called odd if $f(-x)=-f(x)$ for every $x \in \operatorname{Dom}(f)$.

Example

(a) $f(x)=x^{2}+1$,
(b) $f(x)=x^{3}-2 x$.

The only function which is both even and odd is a zero function.

Some properties of functions

A function f is called increasing on an interval l if $f\left(x_{1}\right)<f\left(x_{2}\right)$, whenever $x_{1}<x_{2}$ in I.

A function f is called increasing on an interval l if $f\left(x_{1}\right)<f\left(x_{2}\right)$, whenever $x_{1}<x_{2}$ in I.

A function f is called decreasing on an interval l if $f\left(x_{1}\right)>f\left(x_{2}\right)$, whenever $x_{1}<x_{2}$ in I.

- Linear functions
- Linear functions

Each linear function can be written in the form $f(x)=m x+b$, where $m, b \in \mathbb{R}$.

- Linear functions

Each linear function can be written in the form $f(x)=m x+b$, where $m, b \in \mathbb{R}$. The graph of $f(x)$ is a straight line with the slope m and the y-intercept $(0, b)$.

- Linear functions

Each linear function can be written in the form $f(x)=m x+b$, where $m, b \in \mathbb{R}$. The graph of $f(x)$ is a straight line with the slope m and the y-intercept $(0, b)$.

- Quadratic functions
- Linear functions

Each linear function can be written in the form $f(x)=m x+b$, where $m, b \in \mathbb{R}$. The graph of $f(x)$ is a straight line with the slope m and the y-intercept $(0, b)$.

- Quadratic functions

Each quadratic function can be written in the form $f(x)=a x^{2}+b x+c$, where $a, b, c \in \mathbb{R}$.

- Linear functions

Each linear function can be written in the form $f(x)=m x+b$, where $m, b \in \mathbb{R}$. The graph of $f(x)$ is a straight line with the slope m and the y-intercept $(0, b)$.

- Quadratic functions

Each quadratic function can be written in the form $f(x)=a x^{2}+b x+c$, where $a, b, c \in \mathbb{R}$. The graph of such a function is a parabola which opens either upward (if $a>0$), or downward (if $a<0$).

- Linear functions

Each linear function can be written in the form $f(x)=m x+b$, where $m, b \in \mathbb{R}$. The graph of $f(x)$ is a straight line with the slope m and the y-intercept $(0, b)$.

- Quadratic functions

Each quadratic function can be written in the form $f(x)=a x^{2}+b x+c$, where $a, b, c \in \mathbb{R}$. The graph of such a function is a parabola which opens either upward (if $a>0$), or downward (if $a<0$). The x-intercepts of this parabola are solutions of the equation $a x^{2}+b x+c=0$.

Power functions

Power functions

Each power function has the form $f(x)=x^{\alpha}$, where $\alpha \in \mathbb{R}$.

Each power function has the form $f(x)=x^{\alpha}$, where $\alpha \in \mathbb{R}$.
(a) if α is a positive integer then the graph is the following curve

Each power function has the form $f(x)=x^{\alpha}$, where $\alpha \in \mathbb{R}$.
(a) if α is a positive integer then the graph is the following curve

Each power function has the form $f(x)=x^{\alpha}$, where $\alpha \in \mathbb{R}$.
(a) if α is a positive integer then the graph is the following curve

The domain of x^{α} in this case is the whole real line.

Power functions

Power functions

(b) if $\alpha=\frac{1}{n}$, where n is a positive integer then the graph is the following curve
(b) if $\alpha=\frac{1}{n}$, where n is a positive integer then the graph is the following curve

(b) if $\alpha=\frac{1}{n}$, where n is a positive integer then the graph is the following curve

Observe that

$$
x^{\frac{1}{n}}=\sqrt[n]{x}
$$

(b) if $\alpha=\frac{1}{n}$, where n is a positive integer then the graph is the following curve

Observe that

$$
x^{\frac{1}{n}}=\sqrt[n]{x}
$$

hence, the domain of $x^{\frac{1}{n}}$ is the interval $[0, \infty)$ in the case when n is even,
(b) if $\alpha=\frac{1}{n}$, where n is a positive integer then the graph is the following curve

Observe that

$$
x^{\frac{1}{n}}=\sqrt[n]{x}
$$

hence, the domain of $x^{\frac{1}{n}}$ is the interval $[0, \infty)$ in the case when n is even, and the whole real line in the case when n is odd.

Power functions

(c) if $\alpha=-1$ then the graph is the following curve called hyperbola
(c) if $\alpha=-1$ then the graph is the following curve called hyperbola

(c) if $\alpha=-1$ then the graph is the following curve called hyperbola

The domain of $f(x)=x^{-1}$ is all real numbers except for $x=0$.

Polynomial and rational functions

Polynomial and rational functions

- Polynomial functions

Polynomial and rational functions

- Polynomial functions

Each polynomial function has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

Polynomial and rational functions

- Polynomial functions

Each polynomial function has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0$ are called the coefficients of $P(x)$,

Polynomial and rational functions

- Polynomial functions

Each polynomial function has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0$ are called the coefficients of $P(x), n \in \mathbb{N}$ is called the degree of $P(x)$.

- Polynomial functions

Each polynomial function has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0$ are called the coefficients of $P(x), n \in \mathbb{N}$ is called the degree of $P(x)$. Each polynomial of degree n may have not more than $n x$-intercepts.

- Polynomial functions

Each polynomial function has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0$ are called the coefficients of $P(x), n \in \mathbb{N}$ is called the degree of $P(x)$. Each polynomial of degree n may have not more than $n x$-intercepts.

- Rational functions
- Polynomial functions

Each polynomial function has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0$ are called the coefficients of $P(x), n \in \mathbb{N}$ is called the degree of $P(x)$. Each polynomial of degree n may have not more than $n x$-intercepts.

- Rational functions

Each rational function has the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

- Polynomial functions

Each polynomial function has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0$ are called the coefficients of $P(x), n \in \mathbb{N}$ is called the degree of $P(x)$. Each polynomial of degree n may have not more than $n x$-intercepts.

- Rational functions

Each rational function has the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomials.

- Polynomial functions

Each polynomial function has the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, \ldots, a_{n} \in \mathbb{R}, a_{n} \neq 0$ are called the coefficients of $P(x), n \in \mathbb{N}$ is called the degree of $P(x)$. Each polynomial of degree n may have not more than $n x$-intercepts.

- Rational functions

Each rational function has the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomials. We have

$$
\operatorname{Dom}(f)=\{x \in \mathbb{R} \mid Q(x) \neq 0\} .
$$

Algebraic and trigonometric functions

- Algebraic functions

Algebraic and trigonometric functions

- Algebraic functions

Any algebraic function can constructed from polynomials using addition, subtraction, multiplication, division, powers and roots.

Algebraic and trigonometric functions

- Algebraic functions

Any algebraic function can constructed from polynomials using addition, subtraction, multiplication, division, powers and roots.

Example

$$
f(x)=\sqrt{x^{2}-1}, \quad h(x)=\frac{x+1-\sqrt[3]{x-x^{3}}}{x^{2}-4} \cdot \sqrt{x}
$$

Algebraic and trigonometric functions

- Algebraic functions

Any algebraic function can constructed from polynomials using addition, subtraction, multiplication, division, powers and roots.

Example

$$
f(x)=\sqrt{x^{2}-1}, \quad h(x)=\frac{x+1-\sqrt[3]{x-x^{3}}}{x^{2}-4} \cdot \sqrt{x}
$$

- Trigonometric functions

Trigonometric functions, right triangle definition

Trigonometric functions, right triangle definition

For an acute angle θ, the six trigonometric functions are defined as ratios of lengths of sides of a right triangle as follows:

For an acute angle θ, the six trigonometric functions are defined as ratios of lengths of sides of a right triangle as follows:

$$
\sin \theta=\frac{o p p}{\text { hyp }}, \quad \cos \theta=\frac{a d j}{\text { hyp }}, \quad \tan \theta=\frac{o p p}{a d j}
$$

For an acute angle θ, the six trigonometric functions are defined as ratios of lengths of sides of a right triangle as follows:

$$
\begin{aligned}
& \sin \theta=\frac{o p p}{\text { hyp }}, \quad \cos \theta=\frac{a d j}{\text { hyp }}, \quad \tan \theta=\frac{o p p}{a d j} \\
& \csc \theta=\frac{\text { hyp }}{o p p}, \quad \sec \theta=\frac{\text { hyp }}{a d j}, \quad \cot \theta=\frac{a d j}{o p p}
\end{aligned}
$$

Angles

Angles

Angles are measured in degrees or in radians (abbreviated as rad).

Angles are measured in degrees or in radians (abbreviated as rad). Radian measure of an angle subtended by a circular arc is the length of the arc divided by the radius of the arc.

Angles are measured in degrees or in radians (abbreviated as rad). Radian measure of an angle subtended by a circular arc is the length of the arc divided by the radius of the arc. That is, for any angle θ, its measurement in radians is $\frac{s}{r}$, where s is the length of the enclosed arc and r is the radius of the arc.

Angles are measured in degrees or in radians (abbreviated as rad). Radian measure of an angle subtended by a circular arc is the length of the arc divided by the radius of the arc. That is, for any angle θ, its measurement in radians is $\frac{s}{r}$, where s is the length of the enclosed arc and r is the radius of the arc. Hence, one radian is the angle subtended by an arc of length equal to the radius.

Angles are measured in degrees or in radians (abbreviated as rad). Radian measure of an angle subtended by a circular arc is the length of the arc divided by the radius of the arc. That is, for any angle θ, its measurement in radians is $\frac{s}{r}$, where s is the length of the enclosed arc and r is the radius of the arc. Hence, one radian is the angle subtended by an arc of length equal to the radius.

Angles

For the angle 360° the length of the corresponding arc (full circumference) is $2 \pi r$,

For the angle 360° the length of the corresponding arc (full circumference) is $2 \pi r$, so

$$
360^{\circ}=\left(\frac{2 \pi r}{r}\right) \mathrm{rad}=2 \pi \mathrm{rad}
$$

For the angle 360° the length of the corresponding arc (full circumference) is $2 \pi r$, so

$$
360^{\circ}=\left(\frac{2 \pi r}{r}\right) \mathrm{rad}=2 \pi \mathrm{rad}
$$

Since $\pi=3.1415 \ldots$ then

$$
1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi} \approx 57^{\circ}, \quad 1^{\circ}=\frac{2 \pi}{360^{\circ}} \mathrm{rad} \approx 0.017 \mathrm{rad}
$$

For the angle 360° the length of the corresponding arc (full circumference) is $2 \pi r$, so

$$
360^{\circ}=\left(\frac{2 \pi r}{r}\right) \mathrm{rad}=2 \pi \mathrm{rad}
$$

Since $\pi=3.1415 \ldots$ then

$$
1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi} \approx 57^{\circ}, \quad 1^{\circ}=\frac{2 \pi}{360^{\circ}} \mathrm{rad} \approx 0.017 \mathrm{rad}
$$

Hence, for an angle θ, the degree measure of θ multiplied by $\frac{2 \pi}{360}$ gives the radian measure of θ,

For the angle 360° the length of the corresponding arc (full circumference) is $2 \pi r$, so

$$
360^{\circ}=\left(\frac{2 \pi r}{r}\right) \mathrm{rad}=2 \pi \mathrm{rad}
$$

Since $\pi=3.1415 \ldots$ then

$$
1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi} \approx 57^{\circ}, \quad 1^{\circ}=\frac{2 \pi}{360^{\circ}} \mathrm{rad} \approx 0.017 \mathrm{rad}
$$

Hence, for an angle θ, the degree measure of θ multiplied by $\frac{2 \pi}{360}$ gives the radian measure of θ, while the radian measure of θ multiplied by $\frac{360}{2 \pi}$ produces the degree measure of θ.

Angles

Example

(a) Find the radian measure of 60°.

Example

(a) Find the radian measure of 60°.
(b) Express $\frac{5 \pi}{4} \mathrm{rad}$ in degrees.

Example

(a) Find the radian measure of 60°.
(b) Express $\frac{5 \pi}{4} \mathrm{rad}$ in degrees.

Remark

In Calculus we use radians to measure angles except when otherwise indicated.

Angles

The standard position of an angle occurs when we place its vertex at the origin of a coordinate system and its initial side on the positive x-axis.

The standard position of an angle occurs when we place its vertex at the origin of a coordinate system and its initial side on the positive x-axis. A positive angle is obtained by rotating the initial side counterclockwise,

The standard position of angle occurs when we place its vertex at the origin of a coordinate system and its initial side on the positive x-axis. A positive angle is obtained by rotating the initial side counterclockwise, a negative angle is obtained by clockwise rotation as shown below.

The standard position of an angle occurs when we place its vertex at the origin of a coordinate system and its initial side on the positive x-axis. A positive angle is obtained by rotating the initial side counterclockwise, a negative angle is obtained by clockwise rotation as shown below.

The standard position of an angle occurs when we place its vertex at the origin of a coordinate system and its initial side on the positive x-axis. A positive angle is obtained by rotating the initial side counterclockwise, a negative angle is obtained by clockwise rotation as shown below.

Notice that different angles θ_{1} and θ_{2} can have the same terminal side. It happens when $\theta_{1}-\theta_{2}=2 \pi n, n \in \mathbb{N}$.

Trigonometric functions

For a general angle θ in standard position let $P(x, y)$ be any point on the terminal side of θ and let r be the distance $|O P|$.

For a general angle θ in standard position let $P(x, y)$ be any point on the terminal side of θ and let r be the distance $|O P|$.

For a general angle θ in standard position let $P(x, y)$ be any point on the terminal side of θ and let r be the distance $|O P|$.

Hence, define:

$$
\sin \theta=\frac{y}{r},
$$

For a general angle θ in standard position let $P(x, y)$ be any point on the terminal side of θ and let r be the distance $|O P|$.

Hence, define:

$$
\sin \theta=\frac{y}{r}, \quad \cos \theta=\frac{x}{r},
$$

For a general angle θ in standard position let $P(x, y)$ be any point on the terminal side of θ and let r be the distance $|O P|$.

Hence, define:

$$
\sin \theta=\frac{y}{r}, \quad \cos \theta=\frac{x}{r}, \quad \tan \theta=\frac{y}{x},
$$

For a general angle θ in standard position let $P(x, y)$ be any point on the terminal side of θ and let r be the distance $|O P|$.

Hence, define:

$$
\sin \theta=\frac{y}{r}, \quad \cos \theta=\frac{x}{r}, \quad \tan \theta=\frac{y}{x}, \quad \csc \theta=\frac{r}{y},
$$

For a general angle θ in standard position let $P(x, y)$ be any point on the terminal side of θ and let r be the distance $|O P|$.

Hence, define:

$$
\sin \theta=\frac{y}{r}, \quad \cos \theta=\frac{x}{r}, \quad \tan \theta=\frac{y}{x}, \quad \csc \theta=\frac{r}{y}, \quad \sec \theta=\frac{r}{x},
$$

For a general angle θ in standard position let $P(x, y)$ be any point on the terminal side of θ and let r be the distance $|O P|$.

Hence, define:

$$
\sin \theta=\frac{y}{r}, \quad \cos \theta=\frac{x}{r}, \quad \tan \theta=\frac{y}{x}, \quad \csc \theta=\frac{r}{y}, \quad \sec \theta=\frac{r}{x}, \quad \cot \theta=\frac{x}{y}
$$

Trigonometric functions

The exact trigonometric ratios for certain angles can be found from geometry.

The exact trigonometric ratios for certain angles can be found from geometry.

Example

Find the exact trigonometric ratios for

The exact trigonometric ratios for certain angles can be found from geometry.

Example

Find the exact trigonometric ratios for
(a) $\theta=\frac{\pi}{6}$,

The exact trigonometric ratios for certain angles can be found from geometry.

Example

Find the exact trigonometric ratios for
(a) $\theta=\frac{\pi}{6}$,
(b) $\theta=-\frac{2 \pi}{3}$.

Trigonometric functions

$$
\begin{array}{lll}
\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}, & \sin \frac{\pi}{6}=\frac{1}{2}, & \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, & \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, & \cos \frac{\pi}{3}=\frac{1}{2} \\
\tan \frac{\pi}{4}=1, & \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}, & \tan \frac{\pi}{3}=\sqrt{3}
\end{array}
$$

$$
\begin{aligned}
& \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad \sin \frac{\pi}{6}=\frac{1}{2}, \quad \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
& \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{3}=\frac{1}{2} \\
& \tan \frac{\pi}{4}=1, \quad \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}, \quad \tan \frac{\pi}{3}=\sqrt{3}
\end{aligned}
$$

Example

If $\cos \theta=\frac{2}{5}$ and $0<\theta<\frac{\pi}{2}$, find the other five trigonometric functions of θ.

Trigonometric identities

A trigonometric identity is a relationship among the trigonometric functions.

A trigonometric identity is a relationship among the trigonometric functions.
The following identities follow immediately from definition

A trigonometric identity is a relationship among the trigonometric functions.
The following identities follow immediately from definition

$$
\csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta}
$$

A trigonometric identity is a relationship among the trigonometric functions.
The following identities follow immediately from definition

$$
\begin{gathered}
\csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta} \\
\quad \tan \theta=\frac{\sin \theta}{\cos \theta}, \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{gathered}
$$

A trigonometric identity is a relationship among the trigonometric functions.
The following identities follow immediately from definition

$$
\begin{gathered}
\csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta} \\
\tan \theta=\frac{\sin \theta}{\cos \theta}, \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{gathered}
$$

The next identity is called the main trigonometric identity

A trigonometric identity is a relationship among the trigonometric functions.
The following identities follow immediately from definition

$$
\begin{gathered}
\csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta} \\
\tan \theta=\frac{\sin \theta}{\cos \theta}, \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{gathered}
$$

The next identity is called the main trigonometric identity

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

A trigonometric identity is a relationship among the trigonometric functions.
The following identities follow immediately from definition

$$
\begin{gathered}
\csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta} \\
\tan \theta=\frac{\sin \theta}{\cos \theta}, \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{gathered}
$$

The next identity is called the main trigonometric identity

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

which comes from the Pythagorean Theorem.

Trigonometric identities

Trigonometric identities

From the main identity we obtain

From the main identity we obtain

$$
\tan ^{2} \theta+1=\sec ^{2} \theta, \quad 1+\cot ^{2} \theta=\csc ^{2} \theta .
$$

From the main identity we obtain

$$
\tan ^{2} \theta+1=\sec ^{2} \theta, \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
$$

The following identities follow easily from the definition of sin and cos:

From the main identity we obtain

$$
\tan ^{2} \theta+1=\sec ^{2} \theta, \quad 1+\cot ^{2} \theta=\csc ^{2} \theta .
$$

The following identities follow easily from the definition of sin and cos:

$$
\sin (-\theta)=\sin \theta, \quad \cos (-\theta)=\cos \theta
$$

From the main identity we obtain

$$
\tan ^{2} \theta+1=\sec ^{2} \theta, \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
$$

The following identities follow easily from the definition of sin and cos:

$$
\begin{gathered}
\sin (-\theta)=\sin \theta, \quad \cos (-\theta)=\cos \theta \\
\sin (\theta+2 \pi)=\sin \theta, \quad \cos (\theta+2 \pi)=\cos \theta
\end{gathered}
$$

Trigonometric identities

Next, the following identities are called the addition formulas:

Next, the following identities are called the addition formulas:

$$
\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi
$$

Next, the following identities are called the addition formulas:

$$
\begin{aligned}
& \sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi \\
& \cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi
\end{aligned}
$$

Next, the following identities are called the addition formulas:

$$
\begin{gathered}
\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi \\
\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi \\
\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}
\end{gathered}
$$

Trigonometric identities

Trigonometric identities

The subtraction formulas

Trigonometric identities

The subtraction formulas

$$
\sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi
$$

The subtraction formulas

$$
\begin{aligned}
& \sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi \\
& \cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi
\end{aligned}
$$

The subtraction formulas

$$
\begin{gathered}
\sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi \\
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi \\
\tan (\theta-\phi)=\frac{\tan \theta-\tan \phi}{1+\tan \theta \tan \phi}
\end{gathered}
$$

The subtraction formulas

$$
\begin{gathered}
\sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi \\
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi \\
\tan (\theta-\phi)=\frac{\tan \theta-\tan \phi}{1+\tan \theta \tan \phi}
\end{gathered}
$$

can be obtained from the addition formulas by replacing ϕ by $-\phi$ in the addition identities.

Trigonometric identities

Trigonometric identities

If $\theta=\phi$ then we get the double-angle formulas:

If $\theta=\phi$ then we get the double-angle formulas:

$$
\sin 2 \theta=2 \sin \theta \cos \theta, \quad \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

If $\theta=\phi$ then we get the double-angle formulas:

$$
\sin 2 \theta=2 \sin \theta \cos \theta, \quad \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

Finally, using the main trigonometric identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ in the double-angle formulas we get

If $\theta=\phi$ then we get the double-angle formulas:

$$
\sin 2 \theta=2 \sin \theta \cos \theta, \quad \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

Finally, using the main trigonometric identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ in the double-angle formulas we get

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}, \quad \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}
$$

Trigonometric identities

Trigonometric identities

Example

Prove the identity $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.

Equations

Example

(a) Find all values of θ which satisfy the equation $2 \cos \theta-1=0$.

Example

(a) Find all values of θ which satisfy the equation $2 \cos \theta-1=0$.
(b) Find all values of θ in the interval $[0, \pi]$ which satisfy the equation $2 \cos \theta+\sin 2 \theta=0$.

The graph of $\sin x$ is shown below.

The graph of $\sin x$ is shown below.

The graph of $\sin x$ is shown below.

Observe that $|\sin x| \leqslant 1$

The graph of $\sin x$ is shown below.

Observe that $|\sin x| \leqslant 1$ and $\sin x=0$ only when $x=n \pi, n \in \mathbb{Z}$.

The graph of $\sin x$ is shown below.

Observe that $|\sin x| \leqslant 1$ and $\sin x=0$ only when $x=n \pi, n \in \mathbb{Z}$. The domain of $\sin x$ is the whole real line.

The graph of $\cos x$ can be obtained from the graph for $\sin x$ by shifting by an amount of $\frac{\pi}{2}$ to the left.

The graph of $\cos x$ can be obtained from the graph for $\sin x$ by shifting by an amount of $\frac{\pi}{2}$ to the left. Again, $|\cos x| \leqslant 1$

The graph of $\cos x$ can be obtained from the graph for $\sin x$ by shifting by an amount of $\frac{\pi}{2}$ to the left. Again, $|\cos x| \leqslant 1$ and $\cos x=0$ only when $x=n \pi+\frac{\pi}{2}, n \in \mathbb{Z}$.

The graph of $\cos x$ can be obtained from the graph for $\sin x$ by shifting by an amount of $\frac{\pi}{2}$ to the left. Again, $|\cos x| \leqslant 1$ and $\cos x=0$ only when $x=n \pi+\frac{\pi}{2}, n \in \mathbb{Z}$.

The graph of $\cos x$ can be obtained from the graph for $\sin x$ by shifting by an amount of $\frac{\pi}{2}$ to the left. Again, $|\cos x| \leqslant 1$ and $\cos x=0$ only when $x=n \pi+\frac{\pi}{2}, n \in \mathbb{Z}$.

The domain of $\cos x$ is the whole real line.

The graph of $\tan x$ is shown below.

The graph of $\tan x$ is shown below.

The graph of $\tan x$ is shown below.

This function is unbounded and its domain excludes points $n \pi+\frac{\pi}{2}, n \in \mathbb{Z}$.

The graph of $\cot x$ is shown below.

The graph of $\cot x$ is shown below.

The graph of $\cot x$ is shown below.

The function is also unbounded and with the domain excluding points $n \pi, n \in \mathbb{Z}$.

Sumerian astronomers introduced angle measure. The first trigonometric table was apparently compiled by Hipparchus, who is known as "the father of trigonometry". Driven by the demands of navigation and the growing need for accurate maps of large areas, trigonometry grew to be a major branch of mathematics.

The Canadarm2 robotic manipulator on the International Space Station is operated by controlling the angles of its joints. Calculating the final position of the astronaut at the end of the arm requires repeated use of trigonometric functions of those angles.

Transformations

Transformations

By applying certain transformations to the graph of a given function we can obtain the graphs of certain related functions.

By applying certain transformations to the graph of a given function we can obtain the graphs of certain related functions.

Example:
Let $y=\sqrt{x-2}+3$. We shift the graph of $y=\sqrt{x}$ by 3 units upward and 2 units to the right.

By applying certain transformations to the graph of a given function we can obtain the graphs of certain related functions.

Example:
Let $y=\sqrt{x-2}+3$. We shift the graph of $y=\sqrt{x}$ by 3 units upward and 2 units to the right.

These transformations are called translations.

Transformations

Transformations

Next, let $f(x)$ be a function and let $c>1$.

Next, let $f(x)$ be a function and let $c>1$.
Consider stretching and reflecting the graph of $f(x)$.

Next, let $f(x)$ be a function and let $c>1$.
Consider stretching and reflecting the graph of $f(x)$. To obtain the graph of

- $c f(x)$, stretch the graph of $f(x)$ vertically by a factor of c,

Next, let $f(x)$ be a function and let $c>1$.
Consider stretching and reflecting the graph of $f(x)$. To obtain the graph of

- $c f(x)$, stretch the graph of $f(x)$ vertically by a factor of c,
- ($1 / c) f(x)$, compress the graph of $f(x)$ vertically by a factor of c,

Next, let $f(x)$ be a function and let $c>1$.
Consider stretching and reflecting the graph of $f(x)$. To obtain the graph of

- $c f(x)$, stretch the graph of $f(x)$ vertically by a factor of c,
- ($1 / c) f(x)$, compress the graph of $f(x)$ vertically by a factor of c,
- $f(c x)$, compress the graph of $f(x)$ horizontally by a factor of c,

Next, let $f(x)$ be a function and let $c>1$.
Consider stretching and reflecting the graph of $f(x)$. To obtain the graph of

- $c f(x)$, stretch the graph of $f(x)$ vertically by a factor of c,
- ($1 / c) f(x)$, compress the graph of $f(x)$ vertically by a factor of c,
- $f(c x)$, compress the graph of $f(x)$ horizontally by a factor of c,
- $f(1 / c x)$, stretch the graph of $f(x)$ horizontally by a factor of c,

Next, let $f(x)$ be a function and let $c>1$.
Consider stretching and reflecting the graph of $f(x)$. To obtain the graph of

- $c f(x)$, stretch the graph of $f(x)$ vertically by a factor of c,
- ($1 / c) f(x)$, compress the graph of $f(x)$ vertically by a factor of c,
- $f(c x)$, compress the graph of $f(x)$ horizontally by a factor of c,
- $f(1 / c x)$, stretch the graph of $f(x)$ horizontally by a factor of c,
- $-f(x)$, reflect the graph of $f(x)$ about the x-axis,

Next, let $f(x)$ be a function and let $c>1$.
Consider stretching and reflecting the graph of $f(x)$. To obtain the graph of

- $c f(x)$, stretch the graph of $f(x)$ vertically by a factor of c,
- ($1 / c) f(x)$, compress the graph of $f(x)$ vertically by a factor of c,
- $f(c x)$, compress the graph of $f(x)$ horizontally by a factor of c,
- $f(1 / c x)$, stretch the graph of $f(x)$ horizontally by a factor of c,
- - $f(x)$, reflect the graph of $f(x)$ about the x-axis,
- $f(-x)$, reflect the graph of $f(x)$ about the y-axis.

Transformations

Transformations

Example

Sketch the graph of the function

Transformations

Example

Sketch the graph of the function
(a) $f(x)=-2 \sqrt{1-x}-2$,

Example

Sketch the graph of the function
(a) $f(x)=-2 \sqrt{1-x}-2$,
(b) $f(x)=-x^{2}-6 x-10$.

Composition of functions

Composition of functions

Example

Find the compositions $f \circ g$ and $g \circ f$, and their domains

Composition of functions

Example

Find the compositions $f \circ g$ and $g \circ f$, and their domains
(a) $f(x)=x^{2}, g(x)=x+2$,

Composition of functions

Example

Find the compositions $f \circ g$ and $g \circ f$, and their domains
(a) $f(x)=x^{2}, g(x)=x+2$,
(b) $f(x)=\sqrt{x}, g(x)=\sqrt{2-x}$.

Composition of functions

Example

Find the compositions $f \circ g$ and $g \circ f$, and their domains
(a) $f(x)=x^{2}, g(x)=x+2$,
(b) $f(x)=\sqrt{x}, g(x)=\sqrt{2-x}$.

Exponents

Exponents

Recall the laws of exponents.

Exponents

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

Exponents

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

$$
a^{0}=1
$$

Exponents

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

$$
a^{0}=1, \quad a^{-1}=\frac{1}{a},
$$

Exponents

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

$$
a^{0}=1, \quad a^{-1}=\frac{1}{a}, \quad a^{-x}=\frac{1}{a^{x}}
$$

Exponents

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

$$
\begin{aligned}
& a^{0}=1, \quad a^{-1}=\frac{1}{a}, \quad a^{-x}=\frac{1}{a^{x}} \\
& \text { if } x=\frac{m}{n} \text { then } a^{x}=a^{\frac{m}{n}}=\sqrt[n]{a^{m}}
\end{aligned}
$$

Exponents

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

$$
\begin{aligned}
& a^{0}=1, \quad a^{-1}=\frac{1}{a}, \quad a^{-x}=\frac{1}{a^{x}} \\
& \text { if } x=\frac{m}{n} \text { then } a^{x}=a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \\
& a^{x+y}=a^{x} \cdot a^{y},
\end{aligned}
$$

Exponents

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

$$
\begin{gathered}
a^{0}=1, \quad a^{-1}=\frac{1}{a}, \quad a^{-x}=\frac{1}{a^{x}} \\
\text { if } x=\frac{m}{n} \text { then } a^{x}=a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \\
a^{x+y}=a^{x} \cdot a^{y}, \quad\left(a^{x}\right)^{y}=a^{x y},
\end{gathered}
$$

Exponents

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

$$
\begin{gathered}
a^{0}=1, \quad a^{-1}=\frac{1}{a}, \quad a^{-x}=\frac{1}{a^{x}} \\
\text { if } x=\frac{m}{n} \text { then } a^{x}=a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \\
a^{x+y}=a^{x} \cdot a^{y}, \quad\left(a^{x}\right)^{y}=a^{x y}, \quad(a b)^{x}=a^{x} \cdot b^{x},
\end{gathered}
$$

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

$$
\begin{gathered}
a^{0}=1, \quad a^{-1}=\frac{1}{a}, \quad a^{-x}=\frac{1}{a^{x}} \\
\text { if } x=\frac{m}{n} \text { then } a^{x}=a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \\
a^{x+y}=a^{x} \cdot a^{y}, \quad\left(a^{x}\right)^{y}=a^{x y}, \quad(a b)^{x}=a^{x} \cdot b^{x}, \quad\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}
\end{gathered}
$$

Recall the laws of exponents. For $a>0, b>0$ and arbitrary $x, y \in \mathbb{R}$ we have:

$$
\begin{gathered}
a^{0}=1, \quad a^{-1}=\frac{1}{a}, \quad a^{-x}=\frac{1}{a^{x}} \\
\text { if } x=\frac{m}{n} \text { then } a^{x}=a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \\
a^{x+y}=a^{x} \cdot a^{y}, \quad\left(a^{x}\right)^{y}=a^{x y}, \quad(a b)^{x}=a^{x} \cdot b^{x}, \quad\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}
\end{gathered}
$$

Example

Using the laws of exponents simplify the expression

$$
\left(\frac{x^{2} y^{2} z^{5} x^{-3}}{x^{3} y^{2} z^{-3}}\right)^{-1}
$$

Exponential functions

Exponential functions

An exponential function is a function of the form

$$
f(x)=a^{x}
$$

where $a>0$.

Exponential functions

An exponential function is a function of the form

$$
f(x)=a^{x}
$$

where $a>0$. The domain of $f(x)$ is the whole real line.

An exponential function is a function of the form

$$
f(x)=a^{x}
$$

where $a>0$. The domain of $f(x)$ is the whole real line. Since $a^{x}>0$ for any value of x, the graph of $f(x)$ is above the x-axis and does not have x-intercepts.

An exponential function is a function of the form

$$
f(x)=a^{x}
$$

where $a>0$. The domain of $f(x)$ is the whole real line. Since $a^{x}>0$ for any value of x, the graph of $f(x)$ is above the x-axis and does not have x-intercepts. The y-intercept is the point $(0,1)$ for any value of a.

An exponential function is a function of the form

$$
f(x)=a^{x}
$$

where $a>0$. The domain of $f(x)$ is the whole real line. Since $a^{x}>0$ for any value of x, the graph of $f(x)$ is above the x-axis and does not have x-intercepts. The y-intercept is the point $(0,1)$ for any value of a.

Exponential functions

Exponential functions

Example

Sketch the graph of the function $g(x)=3-2^{1-x}$.

Given a function f we would like to find another function g which reverses the action of f,

Given a function f we would like to find another function g which reverses the action of f, that is, $g(f(x))=x$ for every $x \in \operatorname{Dom}(f)$, and

Given a function f we would like to find another function g which reverses the action of f, that is, $g(f(x))=x$ for every $x \in \operatorname{Dom}(f)$, and $f(g(x))=x$ for every $x \in \operatorname{Dom}(g)$.

Given a function f we would like to find another function g which reverses the action of f, that is, $g(f(x))=x$ for every $x \in \operatorname{Dom}(f)$, and $f(g(x))=x$ for every $x \in \operatorname{Dom}(g)$.

This is possible only if the function f is one-to-one, that is, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Given a function f we would like to find another function g which reverses the action of f, that is, $g(f(x))=x$ for every $x \in \operatorname{Dom}(f)$, and $f(g(x))=x$ for every $x \in \operatorname{Dom}(g)$.

This is possible only if the function f is one-to-one, that is, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

If the graph of a function f is given then it is possible to find out if f is one-to-one using the Horizontal Line Test:

Given a function f we would like to find another function g which reverses the action of f, that is, $g(f(x))=x$ for every $x \in \operatorname{Dom}(f)$, and $f(g(x))=x$ for every $x \in \operatorname{Dom}(g)$.

This is possible only if the function f is one-to-one, that is, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

If the graph of a function f is given then it is possible to find out if f is one-to-one using the Horizontal Line Test: f is one-to-one if and only if no horizontal line intersects its graph more than once.

Example

Find out if the given function is one-to-one.

Example

Find out if the given function is one-to-one.
(a) $f(x)=x^{2}$,

Example

Find out if the given function is one-to-one.
(a) $f(x)=x^{2}$,
(b) $f(x)=1-\frac{1}{2 x-1}$.

Inverse function

Now given a one-to-one function f with domain A and range B,

Now given a one-to-one function f with domain A and range B, the inverse function f^{-1} has domain B, range A, and is defined by

Now given a one-to-one function f with domain A and range B, the inverse function f^{-1} has domain B, range A, and is defined by

$$
f^{-1}(y)=x \quad \Longleftrightarrow \quad f(x)=y
$$

Now given a one-to-one function f with domain A and range B, the inverse function f^{-1} has domain B, range A, and is defined by

$$
f^{-1}(y)=x \quad \Longleftrightarrow \quad f(x)=y
$$

By definition we have

$$
\operatorname{Dom}\left(f^{-1}\right)=\operatorname{Range}(f), \quad \operatorname{Range}\left(f^{-1}\right)=\operatorname{Dom}(f)
$$

Now given a one-to-one function f with domain A and range B, the inverse function f^{-1} has domain B, range A, and is defined by

$$
f^{-1}(y)=x \quad \Longleftrightarrow \quad f(x)=y
$$

By definition we have

$$
\operatorname{Dom}\left(f^{-1}\right)=\operatorname{Range}(f), \quad \operatorname{Range}\left(f^{-1}\right)=\operatorname{Dom}(f)
$$

and

$$
f^{-1}(f(x))=x \quad \forall x \in \operatorname{Dom}(f), \quad f\left(f^{-1}(x)\right)=x \quad \forall x \in \operatorname{Dom}\left(f^{-1}\right)
$$

Now given a one-to-one function f with domain A and range B, the inverse function f^{-1} has domain B, range A, and is defined by

$$
f^{-1}(y)=x \quad \Longleftrightarrow \quad f(x)=y
$$

By definition we have

$$
\operatorname{Dom}\left(f^{-1}\right)=\operatorname{Range}(f), \quad \operatorname{Range}\left(f^{-1}\right)=\operatorname{Dom}(f)
$$

and

$$
f^{-1}(f(x))=x \quad \forall x \in \operatorname{Dom}(f), \quad f\left(f^{-1}(x)\right)=x \quad \forall x \in \operatorname{Dom}\left(f^{-1}\right)
$$

Fact

The graphs of f and f^{-1} are symmetric in the straight line $y=x$.

Fact

The graphs of f and f^{-1} are symmetric in the straight line $y=x$.

Example

Given $f(x)=x^{3}$, graph $f^{-1}(x)$.

Given an algebraic expression for a function $f(x)$, to find an algebraic expression for $f^{-1}(x)$

Given an algebraic expression for a function $f(x)$, to find an algebraic expression for $f^{-1}(x)$

- solve the equation $y=f(x)$ for x in terms of y,

Given an algebraic expression for a function $f(x)$, to find an algebraic expression for $f^{-1}(x)$

- solve the equation $y=f(x)$ for x in terms of y,
- to express f^{-1} as a function of x, interchange x and y, the resulting equation is $y=f^{-1}(x)$.

Given an algebraic expression for a function $f(x)$, to find an algebraic expression for $f^{-1}(x)$

- solve the equation $y=f(x)$ for x in terms of y,
- to express f^{-1} as a function of x, interchange x and y, the resulting equation is $y=f^{-1}(x)$.

Example

Find the inverse function of $f(x)=\frac{4 x-1}{2 x-3}$.

Logarithms

Logarithms

If $a>0$ and $a \neq 1$, the exponential function $f(x)=a^{x}$ is one-to-one.

If $a>0$ and $a \neq 1$, the exponential function $f(x)=a^{x}$ is one-to-one. Its inverse function is called the logarithmic function with base a and is denoted by $\log _{a} x$.

If $a>0$ and $a \neq 1$, the exponential function $f(x)=a^{x}$ is one-to-one. Its inverse function is called the logarithmic function with base a and is denoted by $\log _{a} x$. By the characteristic property of the inverse function we have

If $a>0$ and $a \neq 1$, the exponential function $f(x)=a^{x}$ is one-to-one. Its inverse function is called the logarithmic function with base a and is denoted by $\log _{a} x$. By the characteristic property of the inverse function we have

$$
\log _{a} x=y \quad \Longleftrightarrow \quad a^{y}=x
$$

If $a>0$ and $a \neq 1$, the exponential function $f(x)=a^{x}$ is one-to-one. Its inverse function is called the logarithmic function with base a and is denoted by $\log _{a} x$. By the characteristic property of the inverse function we have

$$
\log _{a} x=y \quad \Longleftrightarrow \quad a^{y}=x
$$

and

$$
\log _{a}\left(a^{x}\right)=x \text { for every } x \in \mathbb{R}
$$

If $a>0$ and $a \neq 1$, the exponential function $f(x)=a^{x}$ is one-to-one. Its inverse function is called the logarithmic function with base a and is denoted by $\log _{a} x$. By the characteristic property of the inverse function we have

$$
\log _{a} x=y \quad \Longleftrightarrow \quad a^{y}=x
$$

and

$$
\begin{gathered}
\log _{a}\left(a^{x}\right)=x \text { for every } x \in \mathbb{R} \\
a^{\log _{a} x}=x \text { for every } x>0
\end{gathered}
$$

Logarithms

Logarithms

The graph of the logarithmic function is shown below

Logarithms

The graph of the logarithmic function is shown below

Logarithms

The graph of the logarithmic function is shown below

By definition, the domain of $\log _{a} x$ is the interval $(0, \infty)$ for every value of a.

Logarithms

Logarithms

Example

Sketch the graph of $f(x)=-\log _{2}(2-x)$.

Logarithms

Logarithms

The following laws of logarithms follow from the corresponding properties of exponents:

Logarithms

The following laws of logarithms follow from the corresponding properties of exponents:

$$
\log _{a}(x y)=\log _{a} x+\log _{a} y,
$$

The following laws of logarithms follow from the corresponding properties of exponents:

$$
\log _{a}(x y)=\log _{a} x+\log _{a} y, \quad \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y
$$

The following laws of logarithms follow from the corresponding properties of exponents:

$$
\begin{gathered}
\log _{a}(x y)=\log _{a} x+\log _{a} y, \quad \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
\log _{a} x^{r}=r \log _{a} x, \text { for every } r \in \mathbb{R}
\end{gathered}
$$

Logarithms

The following laws of logarithms follow from the corresponding properties of exponents:

$$
\begin{gathered}
\log _{a}(x y)=\log _{a} x+\log _{a} y, \quad \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
\log _{a} x^{r}=r \log _{a} x, \text { for every } r \in \mathbb{R}
\end{gathered}
$$

Example

Use the laws of logarithms to evaluate $\log _{2} 80-\log _{2} 5$.

Logarithms

The logarithm with base $e=2.718281828 \ldots$ is called the natural logarithm and has a special notation

$$
\log _{e} x=\ln x
$$

Logarithms

The logarithm with base $e=2.718281828 \ldots$ is called the natural logarithm and has a special notation

$$
\log _{e} x=\ln x
$$

In particular, $\ln e=1$.

Logarithms

Logarithms

Example

Find all values of x satisfying the given equation

Logarithms

Example

Find all values of x satisfying the given equation
(a) $\ln x=2$,

Logarithms

Example

Find all values of x satisfying the given equation
(a) $\ln x=2$,
(b) $e^{2 x+3}-7=0$,

Logarithms

Example

Find all values of x satisfying the given equation
(a) $\ln x=2$,
(b) $e^{2 x+3}-7=0$,
(c) $\ln x+\ln (x-1)=1$.

Logarithms

Logarithms

In many cases it is convenient to change the base of the logarithm.

Logarithms

In many cases it is convenient to change the base of the logarithm.
Suppose we want to write the logarithm $\log _{a} x$ with a new base b.

In many cases it is convenient to change the base of the logarithm.
Suppose we want to write the logarithm $\log _{a} x$ with a new base b.
Denote $\log _{a} x=y$.

In many cases it is convenient to change the base of the logarithm.
Suppose we want to write the logarithm $\log _{a} x$ with a new base b.
Denote $\log _{a} x=y$. Hence, $a^{y}=x$ and by applying $\log _{b}$ to both sides we get $\log _{b} a^{y}=\log _{b} x$

In many cases it is convenient to change the base of the logarithm.

Suppose we want to write the logarithm $\log _{a} x$ with a new base b.
Denote $\log _{a} x=y$. Hence, $a^{y}=x$ and by applying $\log _{b}$ to both sides we get $\log _{b} a^{y}=\log _{b} x$ which implies $y \log _{b} a=\log _{b} x$

In many cases it is convenient to change the base of the logarithm.

Suppose we want to write the logarithm $\log _{a} x$ with a new base b.

Denote $\log _{a} x=y$. Hence, $a^{y}=x$ and by applying $\log _{b}$ to both sides we get $\log _{b} a^{y}=\log _{b} x$ which implies $y \log _{b} a=\log _{b} x$ and

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

