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Challenges in large-scale data analysis
Computerized tomography

• Medical Imaging:
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Time-elapsed Photoacoustic Tomography (PAT2)

.

→ Given spherical projections
→ Find initial pressure
△! Computationally expensive

✓ Non-invasive, non-ionizing
✓ PAT generates high-resolution

images in optically ballistic and
diffusive regimes.

i = 1 i = 20 i = 35 i = 55 i = 80

2tomowave.com, Wang, Anastasio (2011), Xia, Yao, Yang (2014), Chung, Nguyen (2017)
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Atmospheric imaging problem
Track greenhouse gases using satellites

⋄ Estimate spatiotemporal green house gas fluxes at the Earth’s surface using observations
of gases in the atmosphere.

⋄ IP help generate detailed maps of surface emissions using atmospheric observations.

3

3Nehrkorn, Eluszkiewicz, Wofsy, Lin, Gerbig, Longo, Freitas (2010); NOAA Global Monitoring
Division: CarbonTracker CT2017. (2019); Cho (2019).
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Ill-posed inverse problems

Mathematical problem setup

min
u∈Rn

∥A(y)u − b∥2
2, where A(ytrue)utrue + e = b, and b = btrue + e

b ∈ Rm − available observations (measurements)
utrue ∈ Rn − desired solution (unknown quantity of interest)
A ∈ Rm×n − parameter-to-observable map
btrue ∈ Rm − data without noise (not available)
e ∈ Rm − additive noise (Gaussian, Poisson, Laplace, or mixed.)
y ∈ Rd − parameters that parametrize the forward operator

A

*

u

+

e

=

b

t

GOAL: Given b and information about A, compute an approximation of x.
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Introduction
Discrete ill-posed problems (continued)

Would like to determine an approximate solution of Au = b by solving

min
u∈Rn

∥Au − b∥2
2

∥u∥2
2 = uTu, so ∥Au − b∥2

2 = (Au − b)T(ATu − b)

unaive = (ATA)−1AT(btrue + e) = (ATA)−1ATbtrue︸ ︷︷ ︸
utrue

+(ATA)−1ATe︸ ︷︷ ︸
large

• btrue ∈ R(A), (AT A)−1btrue, bounded. e /∈ R(A), (AT A)−1AT e arbitrarily large.

A

*

utrue

+

e

=

b unaive
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Regularization
Direct solvers

If A not too large, consider Singular Value Decomposition, (SVD) A = USVT .

1 Truncated SVD (tSVD): u∗ =
∑k

i=1
uib
σ vi, n = rank(A), k < n.

2 General SVD filtering: u∗ =
∑n

i=1 ϕi(λ)
uib
σ vi, ϕi(λ) =

{
1, if σi large
0, σi small

3 Tikhonov regularization:
u∗ = arg min

u∈Rn
{∥Au − b∥2

2 + λ∥u∥2
2} =

∑n
i=1

σ2
i

σ2
i +λ2

uib
σ vi

Closed form solution: uλ = (ATA + λ2LTL)−1(ATb)

A good solution depends on the choice of a good regularization parameter!!!
—- Large scale problems — difficult to solve.
—- Regularization parameter nontrivial to be estimated.

A

*

utrue

+

e

=

b unaive

→

uλ
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Large scale problems
packages

1 Books
⋄ Hansen, Per Christian. Discrete inverse problems: insight and algorithms., SIAM,

2010.
⋄ Hansen, Per Christian, James G. Nagy, and Dianne P. O’leary. Deblurring images: matrices,

spectra, and filtering., SIAM, 2006.
⋄ Hansen, Per Christian. Rank-deficient and discrete ill-posed problems: numerical aspects of

linear inversion., SIAM, 1998.
2 Packages

⋄ Gazzola, Silvia, Per Christian Hansen, and James G. Nagy. IR Tools: a MATLAB package of
iterative regularization methods and large-scale test problems. Numerical Algorithms 81.3
(2019): 773-811.

⋄ Hansen, Per Christian, and Maria Saxild-Hansen. AIR Tools: A MATLAB Package of
Algebraic Iterative Reconstroction Techniques. DTU Informatics, 2010.

⋄ Van Aarle, Wim, et al. The ASTRA Toolbox: A platform for advanced algorithm development
in electron tomography., Ultramicroscopy 157 (2015): 35-47.

⋄ Pasha, Mirjeta, and Sanderford, Connor. TRIPs-Py: Techniques for Regularization of Inverse
Problems in Python (in preparation)
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Regularization methods
Discrete ill-posed problems

Regularization methods

uλ = argminu
1
p
∥Au − b∥p

p +
λ

q
∥L(β)u∥q

q 0 < p, q ≤ 2

algorithm error model error data error regularization error

p = 2 and q = 2 Tikhonov reg.

1 ≤ p, q < 2 yields a convex
minimization problem No closed form!!!!

0 < q < 1 or 0 < p < 1 yield to a
non-convex minimization problem.

4
4Lanza, Morigi, Reichel, Sgallari (2015), Buccini, Pasha, Reichel (2020), Buccini, Reichel (2021)
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Total variation reconstruction
Edge preserving

Illustration ∥Lu∥q
q 0 < q ≤ 2

Solid blue - ℓ1, the dotted red-ℓ0.5, the solid green - ℓ0.1, the solid black - ℓ0.

True

Observed ℓ2 no TV ℓ1 + TV ℓ0.1 + TV
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Motivation for dynamic inverse problems–Computerized Tomography
Limited angles

Application: Computerized Tomography (CT)

5

5Meaney, Purish, Siltanen, (2018)
Mirjeta Hysni Pasha (mpasha3@asu.edu) Department of Mathematics 14 / 41
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Dynamic inverse problems6

Computational challenges

⋄ Large-scale problems ≥ O(106)
measurements

Speed up the computational time
Lower the memory requirements

⋄ Ill-posed problems
Efficiently determine the
regularization parameters
Define new loss functions
Reconstruct solutions with
specific properties

⋄ Only a few measurements from
limited angles

⋄ Reconstruct solutions with edges

6Pasha, Saibaba, Gazzola, Espanol, de Sturler, https://arxiv.org/abs/2107.05727).
Mirjeta Hysni Pasha (mpasha3@asu.edu) Department of Mathematics 15 / 41
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Dynamic inverse problems
Applications to limited angle tomography
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A new problem set up
Dynamic time-dependent inverse problem

A(1)

. . .
A(nt)


︸ ︷︷ ︸

F

u(1)

...
u(nt)


︸ ︷︷ ︸

u

+

e(1)

...
e(nt)


︸ ︷︷ ︸

e

=

d(1)

...
d(nt)


︸ ︷︷ ︸

d

F ∈ R6553600×6553600, u ∈ R6553600, d ∈ R6553600

R1(u) = λ2
s

nt∑
t=1

∥Lsu(t)∥1 + λ2
t

nt−1∑
t=1

∥u(t+1) − u(t)∥1

△! Millions of parameters
△! Solutions with edges
△! Discover dynamics of the data
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Methods based on Total Variation
Space time total variation – modeling the regularization term

⋄ Let Ls be a matrix that represents the discretized finite difference operator corresponding to the first
derivative.

Ls =

[
I ⊗ Lv
Lh ⊗ I

]
,

⋄ Lv ∈ R(nv−1)×nv ,Lh ∈ R(nh−1)×nh represent the discretized first derivative operators in the v- and
h-directions respectively.

⋄ The discrete total variation (TV) norm ∥Lsu(t)∥1 – sparse gradients.

uλ = argminu
1
2
∥Fu − b∥2

2 +R1(u)

R1(u) = λ2
s

nt∑
t=1

∥Lsu(t)∥1 + λ2
t

nt−1∑
t=1

∥u(t+1) − u(t)∥1

= λ2
s∥(Int ⊗ Ls)u∥1 + λ2

t ∥(Lt ⊗ Invnh )u∥1.
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ℓ2 − ℓq minimization by MM-GKS

⋄ Construct a sequence u(k) that converges to a stationary point of Jλ,q(u).
⋄ At each step the functional Jλ,q(u) is majorized by a quadratic function Qu(k)(u)

that is tangent to Jλ,q(u) at u(k).
⋄ The next iterate u(k+1) is the unique minimizer of Qu(k)(u).
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ℓ2 − ℓq minimization by MM-GKS 7

⋄ Smooth Φz,ε(t) = t by

Φz,ε(t) =
(
t2 + ε2)z/2

with
{

ε > 0 for 0 < z ≤ 1,
ε = 0 for z > 1,

⋄ Consider the functional

min
x

Jλ,q,ε(u) = min
u

∥Au − b∥2
2 + λ

n∑
j=1

ϕq,ε((Lu)j).

⋄ Compute the quadratic tangent majorant for Jλ,q,ε at u(k), (c-arbitrary constant)

Qu(k)(u) =
1
2
∥Au − b∥2

2 +
λ

2
∥P(k)

q,εLu∥2
2 + c

⋄ Find the minimizer of Q

(ATA + λLTP(k)
q,εL)u(k+1) = ATb,

7Lanza, Morigi, Reichel, Sgallari (2015), Buccini, Pasha, Reichel (2020), Buccini, Reichel (2021)
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Remedy the large-dimension issue
Krylov subspaces as dimension reduction and regularization methods

Given A ∈ Rm×n, where m, n - large

Task: Goal: Solve minu ∥Au − b∥2
2

Kd(AT A,AT b) = span{AT b, . . . , (AT A)d−1AT b}. AVd = Ud+1Bd+1,d, AT Ud+1 = VdBT
d,d

New task: minu∈Kd(AT A,AT b) ∥Au − b∥2
2 = min

y∈Rd
∥Bd+1,dy − ∥b∥2e1∥2

2
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ℓ2 − ℓq minimization by MM-GKS to solve the linear problem
continued

STEP 1: Generate the starting subspace.
1 The GKS method first determines an initial reduction of A to a small bidiagonal

matrix by applying 1 ≤ ℓ ≪ min{m, n} steps of Golub–Kahan and get

AV0 = U0B0.

B0 ∈ R(ℓ+1)×ℓ is lower bidiagonal.
V0, U0 have orthonormal columns.

2 The subspace Kℓ(ATA,ATb) = span{ATb, (ATA)ATb, . . . , (ATA)ℓ−1ATb} is
generated. Compute QR factorizations

AV0 = QARA

LV0 = QLRL

z(1) = argmin
z∈Rℓ

∥∥∥∥[ RA
η1/2RL

]
z −

[
QT

Ab
0

]∥∥∥∥2

2
, x(1) = V0z(1)

3 Enlarge the subspace AVℓ+1 = [AVℓ,Avnew], LVℓ+1 = [LVℓ,Lvnew]
(By the residual)

r(1) = AT(AVℓz(1) − d) + ηLT P(0)
q,εLVℓz(1)

.
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ℓ2 − ℓq minimization by MM-GKS to solve the linear problem
Continued

GENERAL STEP k:
1 Let Vk ∈ Rn×k̂ form an orthonormal basis of the solution subspace.

2 Introduce the QR factorizations

AVk = QARA with QA ∈ Rm×k̂, RA ∈ Rk̂×k̂,

(P(k)
q,ε)

1/2LVk = QLRL with QL ∈ Rℓ×k̂, RL ∈ Rk̂×k̂.

3

z(k+1) = argmin
z∈Rℓ

∥∥∥∥[ RA
η1/2RL

]
z −

[
QT

Ab
0

]∥∥∥∥2

2
.

4 Compute the residual

r(k+1) = AT(AVℓz(k+1) − b) + ηLTP(k)
q,εLVℓz(k+1).

5 Expand the solution subspace Vℓ+1 = [Vℓ, vnew] ∈ Rn×(k̂+1).
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Other edge-preserving methods we propose

⋄ Total variation in space and Tikhonov in time (TVplusTikhonov)

R2(u) :=
nt∑

t=1

∥Lsu(t)∥1 +

nt−1∑
t=1

∥u(t+1) − u(t)∥2
2 = ∥(Int ⊗ Ls)u∥1 + ∥(Lt ⊗ Ins)u∥2

2.

⋄ Anisotropic space-time total variation (Aniso3DTV)

Y = U ×1 Lv ×2 Lh ×3 Lt, R3(u) = ∥Y∥1 =

nv∑
v=1

nh∑
h=1

nt∑
t=1

|yv,h,t|.

⋄ 3D space-time isotropic total variation (Iso3DTV)

z̄v(u) := (Int ⊗ Inh ⊗ L̄v)u ,
z̄h(u) := (Int ⊗ L̄h ⊗ Inv)u ,
z̄t(u) := (L̄t ⊗ Inh ⊗ Inv)u .

R4(u) :=
nvnhnt∑
ℓ=1

√
(z̄v(u))2

ℓ + (z̄h(u))2
ℓ + (z̄t(u))2

ℓ = ∥ [z̄v(u), z̄h(u), z̄t(u)] ∥2,1.
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⋄ Anisotropic space-time total variation (Aniso3DTV)

Y = U ×1 Lv ×2 Lh ×3 Lt, R3(u) = ∥Y∥1 =

nv∑
v=1

nh∑
h=1

nt∑
t=1

|yv,h,t|.

⋄ 3D space-time isotropic total variation (Iso3DTV)

z̄v(u) := (Int ⊗ Inh ⊗ L̄v)u ,
z̄h(u) := (Int ⊗ L̄h ⊗ Inv)u ,
z̄t(u) := (L̄t ⊗ Inh ⊗ Inv)u .

R4(u) :=
nvnhnt∑
ℓ=1

√
(z̄v(u))2

ℓ + (z̄h(u))2
ℓ + (z̄t(u))2

ℓ = ∥ [z̄v(u), z̄h(u), z̄t(u)] ∥2,1.
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Other edge-preserving methods we propose

Group sparsity (GS)

zℓ =
[
(Lsu(1))ℓ, . . . , (Lsu(nt))ℓ

]
∈ Rnt ,

ℓ = 1, . . . , n′s, n′s = (nv−1)nh+(nh−1)nv.

R5(u) :=
n′s∑
ℓ=1

∥zℓ∥2

=
∑n′s

ℓ=1

(∑nt
t=1(Lsu(t))2

ℓ

)1/2
= ∥LsU∥2,1.

The main takeaway: All proposed models yield functionals that can be ma-
jorized by quadratic tangent majorants and minimized by GKS.
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Example 1: Dynamic photoacoustic tomography (PAT)

[Sample of true images at time steps t = 1, 10, 20, 30 respectively from left to right.]

[Sample of sinograms at time steps t = 1, 10, 20, 30 and the full sinogram.]

PAT test problem. True images at time steps t = 1, 10, 20, 30.
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Example 1: Dynamic photoacoustic tomography (PAT)
reconstructions

PAT test problem: First row – by solving the static problems, second row – by Iso3DTV, third
row – by AnisoTV, and fourth row – by GS method.
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Numerical Examples
PAT test problem

- MM-GKS 8 IRN-aTV (DP)9 IRN-aTV (L-curve) MM-LSQR
RRE 0.096 0.081 0.071 0.299
CPU time (h) 0.31 10.1 4.16 5.54

1 MM-LSQR is not competitive either in run time or in RRE. Incrementing the
number of inner iterations will only increase the computational cost but will
reduce the RRE.

2 IRN methods have slightly lower RRE but considerably higher run times than
MM-GKS. When MM-GKS is run until 150 iterations (the maximum that we
set), we get comparable RRE in about one hour.

8Huang, G., Lanza, A., Morigi, S., Reichel, L., Sgallari, F. (2017). Majorization–minimization
generalized Krylov subspace methods for ℓp − ℓq optimization applied to image restoration. BIT
Numerical Mathematics, 57(2), 351-378.

9Gazzola, S., Kilmer, M. E., Nagy, J. G., Semerci, O., Miller, E. L. (2020). An inner–outer iterative
method for edge preservation in image restoration and reconstruction. Inverse Problems, 36(12), 124004.
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Example 2: Emoji dataset
10 projection angles

10 angles. First row – the original images, second row – static problems, third row – AnisoTV,
fourth row – 3DTV at time nt = 1, 5, 9, 15.
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Spatial temporal Bayesian Inverse Problems
Challenges
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Bayesian inverse problems
Problem formulation

Let G : X 7→ Y such that b = Gu + e, e ∼ N (0, λ−1I), u ∼ N (0, δ−1I)

Bayes’ Law:

πpos(u) = π(u | b) =
πlike(b | u)πpr(u)

Z ∝ πlike(b | u)πpr(u),Z =

∫
Z
πlike(b | z)πpr(z)dz.

πpr prior density - encodes prior knowledge.

π(u) = π(u | b) is the posterior density - represents the solution.
πlike((b | u)) is the likelihood – encodes knowledge for the observations
Z normalizing constant (model evidence)

Maximum a posterior (MAP):

π(u | b) = (λ/2π)
n/2
exp

(
−λ/2∥Gu − b∥2

2

)
(δ/2π)

n/2
exp

(
−δ/2∥u∥2

2

)
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Edge-preserving priors
From deterministic to Bayesian inverse problems

Edge-preserving via the prior probability distribution
⋄ Shrinkage priors (shrinks small components to zero while maintaining true large ones)

Elastic net priors
Discrete Gaussian mixture priors
Horseshoe priors
Ridge priors

⋄ Heavy-tailed Markov random fields (increase the probability of large jumps by heavy tail
distributions)

Total Variation (TV) priors
Laplace Markov random field priors

△! The conditional mean estimates for the TV prior are not edge preserving through fine
discretizations of the model space.

⋄ Random fields with jumps of discontinuities (usage of level set functions that determine
the shapes or bases)

Level-set priors
Besov priors
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Discretization invariant
Besov priors

△! Unwanted phenomena
Representation of the a priori knowledge is incompatible with discretization
The estimates diverge with adding more measurements.

✓ TV regularization is known to preserve edges by imposing the ∥x∥1.
Equivalent to computing MAP using a TV prior and Gaussian likelihood.
△! Bayesian inversion with discretized TV prior is not discretization invariant.
Conditional mean looses the edge preserving property.
✓ We seek to develop priors that are discretization invariant 10

10Saksman, Matti Lassas, and Samuli Siltanen.“Discretization-invariant Bayesian inversion and Besov
space priors.” arXiv preprint arXiv:0901.4220 (2009), Lan, Shiwei, and Babak Shahbaba. “Sampling
constrained probability distributions using spherical augmentation.” Algorithmic Advances in Riemannian
Geometry and Applications. Springer, Cham, 2016. 25-71.
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Bayesian inverse problems
Besov priors

Consider a basis {ϕℓ}∞ℓ=1 for L2(Td), Td = (0, 1]d for d ≤ 3 s.t. any f ∈ L2(Td)

f (x) =
∞∑
ℓ=1

fℓϕℓ(x).

Denote Xs,q as a Banach space with norm ∥ · ∥s,q defined as

∥f∥s,q =

(
∞∑
ℓ=1

ℓ(
sq
d + q

2 −1)|fℓ|q
) 1

q

,with s > 0 and q ≥ 1.

Let s > 0, 1 ≤ q < ∞ and κ > 0 be fixed. We consider a sequence of i.i.d random
variables {ξℓ}∞ℓ=1 whose probability density function is a q-exponential distribution:

πξ(·) ∝ exp (−1
2
|ξ|q).

For an orthonormal basis {ϕℓ}∞ℓ=1, we define a random function u as follows

u(x) =
∞∑
ℓ=1

uℓϕℓ(x) =
∞∑
ℓ=1

γℓξℓϕℓ(x), ξℓ
iid∼ πξ, uℓ := γℓξℓ, γℓ = κ

− 1
q ℓ

−( s
d +

1
2 −

1
q ).

We refer to the induced measure on functions u as Besov measure, denoted as µ0.
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Besov Priors
Generalization to Spatial-Temporal domain

Let f ∈ Lp(T ) over temporal domain T . We have the following series expansion for a
function defined on spatial and temporal domains

f (x, t) =
∞∑
ℓ=1

fℓ(t)ϕℓ(x),where for each ℓ ∈, fℓ ∈ Lp(T ).

For the infinite sequence f := {fℓ}∞ℓ=1, we define the following (r, q, p) norm with spatial
(Besov) index q and temporal index p:

∥f∥r,q,p =

(
∞∑
ℓ=1

ℓrq∥fℓ∥q
p

) 1
q

, r = r0 :=
s
d
+

1
2
− 1

q
.

Denote such space ℓr,q(Lp(T )) := {f |∥f∥r,q,p < ∞}. We define the (r, q, p) norm for
f (x, t) and denote the Banach space Xr,q,p = {f (x, t)|∥f∥r,q,p < ∞}.
We generalize the Besov process B(κ,Xs,q) to be spatiotemporal by varying random
coefficients {ξℓ} in time according to a process11:

u(x, t) =
∞∑
ℓ=1

uℓ(t)ϕℓ(x) =
∞∑
ℓ=1

γℓξℓ(t)ϕℓ(x), ξℓ(·)
iid∼ qEP(0, C)

This stochastic process is the spatiotemporal Besov process (κ, C,Xr,q,p).

11Lan, Li, Pasha, “Edge-Preserving Priors for Spatio-Temporal Inverse Problems” (in preparation)
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Revisiting Emoji example

Reconstruction results for the emoji test problem with na = 10.
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STEMPO test problem
Simulated data

Consider images from Spatio-TEmporal Motor-POwered (STEMPO) phantom
12.
Select nt = 20 images of size 560 × 560.
Generate the forward operators A(t), t = 1, 2, . . . , nt by considering nt vectors of
length 11 containing projection angles.
Each forward operator A ∈ R8701×313600 and the blockdiagonal matrix
A ∈ R174020×6272000.
Obtain nt sinograms d(t) ∈ R8701, with D(t) ∈ R791×11, for t = 1, 2, . . . , nt.

12Tommi Heikkilä. Stempo–dynamic x-ray tomography phantom. arXiv preprint arXiv:2209.12471,
2022
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STEMPO test problem
Simulated data

Dynamic STEMPO test problem: First row, from left to right: True images at time steps t = 1, 10, 20, 30.
Second row, from left to right: Reconstructions with Besov Priors s = 2, q = 1 for spatial domain and
q = 1 for time domain at time steps t = 1, 10, 15, 20. Third row, from left to right: Reconstructions with
Besov Priors s = 1, q = 1 for spatial domain and q = 1 for time domain at time steps t = 1, 10, 15, 20.
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High-Dimensional Data and Inverse Problems
Spatio-Temporal Brain fMRI

1 Neurological disorders are characterized in the early stages by hidden ongoing brain injury.
2 Most of traditional kernel methods convert a tensor to a vector (or a matrix)
3 Conversion to vectors would cause the loss of structural information such as the spatial arrangement

of voxel-based features.

Ma, Guixiang, et al.“Spatio-temporal tensor analysis for whole-brain fMRI classification. “Proceedings of the 2016 SIAM International Conference on Data Mining.
SIAM, 2016.
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New exciting work
Tensor representation of high-dimensional data

Data from many applications are natively high dimensional.

Standard linear algebra tools can not be used.
Emergent high need for developing and using tensor framework for a variety of
applications, including image reconstruction and compression.

X ∗ = argmin
X

J (X ;B) = 1
p
∥B − A(X )∥p

p +R(X )
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Concluding remarks and outlook

✓ Accomplished so far
We propose 6 main methods for solving time-dependent inverse problems based on
a generalized Krylov subspace.
Explored UQ methods for spatial and temporal priors and observations.
Developed non-Gaussian priors for dynamic IP

⇒ Potential future directions
Develop efficient methods for sampling in large-scale dynamic IP.
Develop decompositions for higher dimension representations.

Thank you for your attention!
S. Lan, S. Li, and M. Pasha.

Spatiotemporal Besov Priors for Bayesian Inverse Problems (in preparation).
S. Lan, S. Li, and M. Pasha.

Bayesian Spatiotemporal Modeling for Inverse Problems.
https://arxiv.org/abs/2204.10929

M. Pasha, A. K. Saibaba, S. Gazzola, M. I. Espanol, and E. de Sturler.
Efficient edge-preserving methods for dynamic inverse problems.

https://arxiv.org/abs/2107.05727
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