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My main research interests are based in the analysis of partial differential equations (PDEs), par-
ticularly those centered about hydrodynamic and geophysical equations, such as the incompressible
Navier-Stokes or the quasi-geostrophic equations. I am also interested in chemotaxis equations that,
for instance, incorporate the effects from the interaction of an organism with the ambient incompress-
ible fluid, and dispersive equations with weak damping mechanisms. A main source of inspiration in
my work derives from the mathematics of turbulence, such as the identification of small length scales,
and its applications, for instance, to dissipative dynamical systems or data assimilation; it continues to
be a driving force in my research developments. My work employs various tools from harmonic analy-
sis, semigroup theory, approximation theory, control theory, as well as elliptic equations and classical
energy methods.

1. Overview of works

My early work involved establishing higher-order regularity for solutions to PDEs via so-called Gevrey-
norm techniques. Classically, this technique was used to establish regularity of solutions to PDEs in
the analytic class of functions. In the context of turbulence, an immediate consequence of this is that
one obtains estimates on the number of degrees of freedom in the flow. It can as well be adapted
to establishing sub-analytic regularity, which is a natural regularity class for equations that feature a
dissipation operator of the form (−∆)γ , γ < 1/2. In general, the Gevrey norm approach provides a
flexible and efficient way to capture the “optimal” smoothing effect brought upon by such an operator.
This approach and these features, in addition to its applications, are explored and developed in several
joint works involving A. Biswas, L. Hoang, M.S. Jolly, P. Silva, E.S. Titi, and K. Zhao described
below. In particular, in a joint work with A. Biswas and P. Silva, we extend this approach to a general,
scaling-critical framework, in which we establish rather powerful harmonic analysis inequalities.

Some of my current work concerns further development of a certain approach to data assimilation and
provides the theoretical foundations for its implementation and rigorous support for common practices
in data assimilation, e.g., assimilating only surface measurements to synchronize an approximating
signal with the true signal in a three-dimensional domain. The approach exploits a feature of certain
dissipative systems in which the small scales are asymptotically enslaved to the large scales. My work
on this topic involves overcoming analytical difficulties brought on by the presence of fractional diffusion
operators, exploring physically relevant modifications of the observation operators, and studying the
nature of the synchronization. This approach has also recently found applications to the study of the
long-time behavior of such equations. In particular, one can use this idea to reduce the original PDE
to an ordinary differential equation (ODE) called the “determining form.” The works in this vein are
joint works involving A. Biswas, M.S. Jolly, E.J. Olson, T. Sadigov, and E.S. Titi.

2. Dissipation length scales & Degrees of freedom

The classical picture for three-dimensional (3D) turbulence posits the existence of an “inertial range”
of length scales, where nonlinear effects in the flow are dominant. In this range, the energy decays as
the length scale decreases according to a power law (cf. [56]). This inertial range should then extend
down to the “dissipation range,” where one expects the flow to be governed predominantly by the linear
effect of viscous energy consumption. The length scale demarcating the transition from the inertial to
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the dissipation range is known as the “Kolmogorov dissipation length scale,” which shall be denoted
as `Kol. One thus imagines that at length scales ` ≤ `Kol, the viscosity and energy dissipation rate are
all that are needed to describe the flow. From this observation, an estimate for the number of degrees
of freedom in the system is provided by L3/`3Kol, where L is the linear size of the domain (cf. [59]).
Under certain universality assumptions, an explicit expression for `Kol can be obtained by heuristic
scaling arguments. We seek, therefore, to quantify it through rigorous estimates on the equations of
motions themselves

Much literature has been dedicated to this task, namely, of deducing estimates for `Kol directly from
the Navier-Stokes equations (NSE), as well as for its analogous two-dimensional (2D) counterpart, `Kr,
referred to as the “Kraichnan dissipation length scale” (cf. [2, 17, 24, 34, 37, 38, 39, 42, 58]). The NSE
is given by the system

∂tu− ν∆u+ (u· ∇)u+∇p = f, ∇·u = 0, (2.1)

where u denotes the velocity vector field of the fluid, ∇·u = 0 expresses its incompressibility, p is the
scalar pressure field, and f is an external body force. We recall from the Paley-Wiener theorem that
a function is real analytic with uniform radius of real analyticity if and only if its Fourier transform
decays exponentially. Moreover, the exponential decay rate is proportional to its real analyticity
radius. Since `Kol is indicated by an exponential cut-off in the energy spectrum, the radius of real
spatial analyticity, `a, of u satisfies `a . `Kol. Therefore, L3/`3a provides an upper bound estimate for
the number of degrees of freedom in the flow.

In my Ph.D. thesis and a joint work with A. Biswas, M.S. Jolly, and E.S. Titi [6], a Gevrey-norm
approach is adapted and refined to establish real spatial analyticity and ultimately obtain

`a & `4Kol and `a & `2Kr,

for turbulent flows that satisfy (2.1) in a periodic domain. The Gevrey norm approach was introduced
by Foias and Temam in [38]; it allows one to bypass direct estimation of higher-order derivatives to
establish both space and time analyticity. Their method was refined in [24] to obtain a sharper estimate
of the analyticity radius in 3D under periodic boundary conditions, while the best-to-date estimates
in 2D with these boundary conditions are obtained in [58] by instead resorting to complex-analytic
techniques.

Our above estimates improve upon the work of [5], as well as unify the results of [24] in 3D and [58]
in 2D under a single framework, namely a semigroup framework in analytic Gevrey classes. Moreover,
our method exposes a new path to lowering the above exponents closer to 1, namely, by improving
higher-order estimates of the flow in the long-time average. The mathematics involved in pursuing this
avenue appeals to a statistical framework of turbulence and requires further exploration.

3. Gevrey regularity & Asymptotic expansions

3.1. Supercritical surface quasi-geostrophic (SQG) equation. For γ ∈ (0, 2), the dissipative
SQG equation in non-dimensionalized variables is given by

∂tθ + κΛγθ + u· ∇θ = f, u = R⊥θ, (3.1)

where θ is the scalar surface temperature of a fluid, which is advected along the velocity field, u, and f
is a given external forcing term. The operator R⊥ := (R2,−R1) is determined by the Fourier symbols
iξj/|ξ|, which ensures that u is divergence-free. The fractional Laplacian operator, Λγ , appears with
prefactor κ > 0, and its Fourier symbol is given by |ξ|γ .

Equation (3.1) represents the simplest model derived from the 3D NSE of a geophysical fluid in a regime
of strong rotation that captures nontrivial dynamics which depart from the regime of geostrophically
balanced flows, i.e., where the Earth’s rotational effects are balanced by the horizontal pressure gradient
(cf. [67]). The regimes γ > 1, γ = 1, γ < 1, refer to the subcritical, critical, and supercritical cases,
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respectively. Since its introduction into the mathematical community by Constantin, Majda, and
Tabak [18], the equation has been thoroughly studied, and by now, well-posedness in various function
spaces and global regularity has been resolved in all but the supercritical case (cf. [8, 13, 15, 19, 22,
25, 54, 55, 68]). The long-time behavior and existence of a global attractor has also been studied in
both the subcritical and critical cases (cf. [9, 12, 16, 21, 19, 51]).

In my Ph.D. thesis and joint work with A. Biswas and P. Silva [7], we establish Gevrey regularity for
the supercritical (γ < 1) SQG equations in critical Besov spaces. These spaces may be viewed as a scale
of spaces obtained by interpolating between the classical Sobolev spaces. This work improves upon
the results in [3, 11, 27]. More importantly, it extends the Gevrey norm technique to the more general
class of Lp-based Besov spaces for subanalytic Gevrey classes, thereby providing a natural setting in
which to study such regularity for solutions to other PDEs with sub-Laplacian dissipative operators.

The Gevrey norm technique was extended to the Lp setting in Lemarié-Rieusset in the case of the
analytic Gevrey class by establishing a crucial bilinear estimate in Lp spaces (cf. [60, 61, 62]). However,
in our case, the structural changes in the corresponding bilinear operator brought upon by working in
a subanalytic Gevrey class necessitates a more delicate treatment of its symbol. By carefully capturing
the cancellation in the operator, we are able to prove a powerful commutator estimate in Gevrey
classes, which ultimately allows us to establish the requisite a priori bounds. Incidentally, our result
would improve upon existing “eventual regularity” results (cf. [23]), provided that the solution becomes
sufficiently small in some norm at some future time, thus shedding light on a new avenue to approach
this class of problems. Also, an important class of Besov spaces that are not covered by our result are
those which have the additional structure of a Banach algebra. Both of these are essentially “endpoint”
phenomena and are issues that A. Biswas and I continue to investigate.

3.2. Keller-Segel-Navier-Stokes model. In an effort to understand the interplay between certain
bacteria swimming in a viscous, incompressible fluid, the oxygen diffusion and consumption, and
chemotaxis, a model was proposed in [69] that couples the Navier-Stokes equations with the Keller-
Segel model:

∂tu− ν∆u+ (u· ∇)u+∇p = −n∇φ, ∇·u = 0,

∂tn−Dn∆n+ (u· ∇)n+∇· (nχ(c)∇c) = 0,

∂tc−Dc∆c+ (u· ∇)c+ nf(c) = 0,

(3.2)

where u, p are the fluid velocity and pressure fields, and n, c are the cell density and oxygen concen-
tration, respectively. The constants ν,Dn, Cc are the kinematic viscosity, cell diffusion, and oxygen
diffusion coefficients, while χ and f are smooth, nonnegative functions that capture the chemotactic
sensitivity and oxygen consumption rate.

From the point of view of hydrodynamic equations, (3.2) is a generalization of the Boussinesq equations.
Indeed, if c, χ, φ are chosen so that c, χ ≡ 0, φ(x1, x2) = x2, then one recovers precisely the Boussinesq
equations. On the other hand, by comparing the nonlinearity and the dissipation, one sees that the
problem is also “critical” in the sense that the largest order appearing in the nonlinearity is the same
as that of the dissipation, i.e., in the equation for the cell density.

In a joint work with K. Zhao [64], we establish several fundamental results for the system (3.2).
In particular, several blow-up criterion are developed in a 3D bounded domain with rather general
conditions imposed on f, g and the boundary data, as well as a global regularity result in 2D under
certain physical assumptions motivated by [69]. It is also shown that in spite of the high-order derivative
appearing in the nonlinearity, solutions to (3.2) instantaneously enter an analytic Gevrey class, in all
dimensions d ≥ 2, in the case of periodic boundary conditions, and remain in that class at least for
short-time. However, due to the apparent criticality, this latter result is restricted to a small data
regime. Indeed, this criticality can be broken provided that ∇c is replaced by |∇|α, where α < 1,
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which in turn yields a short-time, but large-data result; in light of this, it is an issue that deserves
further consideration.

3.3. Asymptotic expansions for the 3D NSE. In 1984, Foias and Saut [35] proved that in bounded
or periodic domains the regular solution of the NSE decays exponentially at an exact rate which is an
eigenvalue of the Stokes operator (see [35]). Remarkably, they go on to show in [36] that the solution in
fact admits an asymptotic expansion which details its long-time behavior with respect to the Sobolev
class of functions. This expansion has found applications to statistical solutions of the NSE, decaying
turbulence, and the analysis of helicity (cf. [30, 31]).

In a joint work with L. Hoang [46], we consider the 3D NSE in a periodic domain with potential forcing.
By exploiting the eventual regularization effect, we are able to strengthen the Foias-Saut expansion
to hold in the analytic Gevrey class of functions, and establish explicit decay rates for its remainders
with respect to this stronger norm. Our approach via eventual regularization simplifies greatly the
original proof of Foias and Saut and ultimately renders it adaptable to other dissipative systems, thus
suggesting that the analytic Gevrey class is the natural setting for these expansions. In continuation
of this work, L. Hoang, A. Biswas, and I are working to adapt these expansions to the SQG equation
and generalize them accommodate the case of a general body force, the latter of which has interesting
applications to numerical computation of solutions.

4. Data assimilation & Determining forms

The approach to data assimilation that has been a focus of my recent work is the one proposed by
Azouani, Olson, and Titi in [1]. In particular, suppose u is a solution to a physical model over a domain
Ω, whose time evolution is governed by the equation

du

dt
= F (u), (4.1)

except that the initial data u0 has not been provided and is thus, unknown. Then consider the following
initial value problem:

dw

dt
= F (w)− µIh(w − u), w(0) = w0, (4.2)

where w0 is any initial condition, h > 0, µ = µ(h) > 0 is the “relaxation parameter”, and Ih is a finite-
rank linear operator representing the observables. Typically, Ih is a projection onto finitely many nodal
or modal values, where h is proportional to the number of spatial nodes or Fourier modes. One would
then integrate this modified system (4.2) forward in time to obtain a suitable approximation of the
reference solution with which to initialize the original system. Indeed, the term µIh(u − w) serves to
relax the large scales of the approximating solution, w, towards the reference solution, u, which in fact
suffices to synchronize w with u at the small scales, precisely by exploiting the fact that the many
hydrodynamic systems asymptotically enslaves the small scales to the large scales.

4.1. Data assimilation for 2D SQG equation. In a joint work with M.S. Jolly and E.S. Titi [49], we
establish global well-posedness for the corresponding feedback control system (4.2) of the 2D subcritical
SQG equation (γ > 1) with periodic boundary conditions, i.e., F (w) = −κΛγw− (R⊥w)· ∇w+ f and
Ih given by projection onto finitely many Fourier modes or local spatial averages. We moreover show
that w converges to θ exponentially in time in the topology of square-integrable functions, provided
that the relaxation parameter and the number of collected observables are sufficiently large. The key
estimates required are fractional Poincaré-type inequalities for the observation operators, Ih. As a con-
sequence, since ∂zψ|z=0 = θ, where ψ is the streamfunction for the 3D quasi-geostrophic equation, our
result immediately implies that in a particular simplified scenario, the approximating streamfunction
synchronizes with ψ in the three-dimensional half-space. Our result therefore gives rigorous support to
the notion that for vertically constrained flows, one need only assimilate data from the two-dimensional
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boundary. Having isolated the difficulties arising from balancing the nudging term with the fractional
dissipation, we will now move on to “physical case,” where γ = 1, i.e., the critical case for the SQG
equation.

In a joint work with M.S. Jolly, E.J. Olson, and E.S. Titi [48], we continue to study the 2D subcritical
SQG equation, but modify the approach to accommodate the more physical case of time-averaged modal

observables with a delay, i.e., Īh = 1
δ

∫ t−δ
t−2δ Ih, where Ih is given by projection onto finitely many Fourier

modes. Indeed, this is motivated by the fact that the instruments used to collected weather data, e.g.
wind velocity, is manifestly averaged in time. We are once again able to ensure the synchronization
property, in spite of the delay and with the same number of modes as the “instantaneous case” above,
provided that averaging window, δ, is chosen sufficiently small. We overcome the difficulties introduced
by the temporal non-locality, Īh by controlling the low modes of the time-derivative, and obtaining a
suitable “non-local” Gronwall inequality.

4.2. Higher-order synchronization for the 2D NSE equation. In a joint work with A. Biswas
[4], we study higher-order synchronization of the approximating solution, w, to the reference solution,
u, satisfying (2.1) with periodic boundary conditions. In particular, w satisfies (4.2) supplemented
with ∇·w = 0, where F (w) = ν∆w−w· ∇w−∇q+ f and Ih is given by projection onto finitely many
Fourier modes in (4.2). We are able to show that the synchronization can in fact be upgraded to the
topology of uniform convergence for the same number of modal observables, up to a prefactor, required
in [1], where they were only able to guarantee convergence in the topology of H1, i.e., L2 vector fields
whose weak derivatives are also L2. Moreover, by increasing the number of known modal observables,
we show that one can in fact ensure synchronization in an analytic Gevrey norm. The next step in
this direction will be to establish higher-order synchronization when data is presented as local spatial
averages or nodal values.

4.3. Determining form for the subcritical SQG equation. Motivated by the finite dimensionality
of the dynamics of solutions to the 2D NSE, the study of determining forms was initiated in [32, 33] for
these equations. A determining form is an ODE in an infinite-dimensional Banach space of trajectories,
which subsumes the dynamics of the original equation in a certain way. A stronger expression of
finite-dimensionality is the existence of an inertial manifold, which is a finite-dimensional manifold
that contains the global attractor of the original system and, moreover, attracts all solutions at an
exponential rate. Restricted to the inertial manifold, the dynamics of the original system reduces to
an ODE, known as an inertial form, in a finite-dimensional phase space. However, the existence of an
inertial manifold for the 2D NSE has been an open problem since the 1980s.

In a joint work with M.S. Jolly, T. Sadigov, and E.S. Titi [47], we establish the existence of a determin-
ing form for the subcritical SQG equation that is induced by its corresponding feedback control system
(4.2). In particular, we show that there exist Banach spaces, X,Y , and a map W : X → Y , which is the
solution operator of (4.2) corresponding to a “reference solution,” u ∈ X, such that IhW : Bρ

X(0)→ Y
is Lipschitz, for some ball of radius ρ > 0, centered at 0 in X, where Ih is given by (smooth) projection

onto Fourier modes |k| ≤ 21/h. It then follows from [33], for instance, that the equation given by

dv(· )
dτ

(τ) = −‖v( · )(τ)− IhW (v( · )(τ))‖2X(v(· )(τ)− Ihθ∗), v(0) = v0 ∈ BρX(0). (4.3)

defines an ODE in X, where θ∗ is a given steady state of (3.1).

Our proof of this result hinges on obtaining uniform estimates in L∞ for solutions to (4.2) that are

independent of the number of modes m ∼ 21/h. Indeed, the Lp maximum principle that one is able to
derive for (4.2), while uniform in t, depends on the number of modes, which precludes one from using
these bounds to establish the desired Lipschitz property. Nevertheless, we show that by appealing to
harmonic analysis tools, one can adapt De Giorgi-type techniques (cf. [8]), to deduce uniform bounds
in L∞ which are indeed independent of m.
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5. Unique ergodicity

In the context of wave turbulence, I consider the damped-driven Korteweg-de Vries equation per-
turbed by a stochastic driving force. A typical assumption made in the study of turbulence is to assume
ergodicity of the corresponding dynamical system, which is the property that long-time averages can
be equated with “ensemble averages,” that is, averages over all of the states of the system. This
assumption is known as the Ergodic Hypothesis. The goal of “unique ergodicity,” then, is to prove
that this hypothesis is in fact a valid assumption. This can be done by demonstrating the existence
and uniqueness of invariant measures for the system. Then, by virtue of being the unique invariant
measure, it is necessarily ergodic. With N. Glatt-Holtz and G. Richards, we verify the Ergodic Hypoth-
esis in the context of the damped-driven, stochastic KdV equation. In the course of doing so, we also
establish the global approximate controllability of the deterministic damped-driven KdV equation, as
well exponential mixing rates of the unique invariant measure in the regime of strong damping.

The model of interest is the stochastically perturbed, damped-driven KdV equation given by

du+ (γu+ uxxx + uux)dt = fdt+ σ· dW, (5.1)

equipped with periodic boundary conditions, where u represents an amplitude, γ > 0 captures damping
effects, f is an external, time-independent force, σ ∈ (C∞(T))N , and W = (W1, . . . ,Wd), where
Wj = Wj(t) is a one-dimensional Brownian motion for each j = 1, . . . , N . Although the deterministic
version of (5.1), i.e., when σ ≡ 0, was originally derived as a model for shallow water waves, it has
since been realized as a canonical model equation. Indeed, when γ = 0 and σ ≡ 0, (5.1) appears in
the study of atmospheric and oceanic internal solitary waves, mid-latitude and equatorial planetary
waves, plasma waves, ion-acoustic waves, lattice waves, waves in elastic rods, and many other physical
contexts [66].

In an ongoing joint work with N. Glatt-Holtz and G. Richards [40], we establish existence and
uniqueness of an invariant, measure for (5.1), in the case where a large, but finite number of modes,
N = N(γ) � 1, are forced stochastically, i.e., σ = PNσ, where PN is the projection onto Fourier
modes |k| ≤ N . We also establish the global approximate controllability of the system, as well as the
regularity of the support of the invariant measure. We note that since ergodic measures are extremal
points within the set of invariant measures for (5.1), the unique invariant measure must be ergodic,
thereby establishing ‘unique ergodicity’. Inspired by recent results [41, 50], we adopt the approach
of asymptotic coupling, in which one couples (5.1) with its nudged stochastic counterpart (4.2); the
‘coupling’ of the statistics of these two equations then suffices to deduce unique ergodicity. Interestingly,
the general framework developed by [41] is insufficient to capture the case of (5.1) outside of the regime
of large damping due to the lack of stronger estimates required of the framework. In the general case,
we therefore make appeal to the variation of the Doob-Khasminskii Theorem established by Hairer and
Mattingly, which provide sufficient conditions for deducing uniqueness of invariant measures. Indeed,
we are able to verify directly the properties that the Markov transition probabilities (Pt)t≥0 of (5.1)
are both asymptotically strong Feller and satisfy a form of irreducibility.

The case in consideration is known as the ‘essentially elliptic’ case, where the noise is sufficiently
non-degenerate in the sense that all unstable directions, of which there are only finitely many are
forced. In the context of turbulence, the number of such modes is finite, albeit large, and represents
the number of degrees of freedom. The propagation of the noise through the system in this case
is well-understood for the 2D NSE (see for instance [29]) since one can identify the mechanism for
the existence of such modes through heat dissipation. The mechanism for the KdV equation is very
different since one only has weak dissipation. Our analysis therefore sheds further light on the relation
between the contractive property typically expected of this mechanism and proving unique ergodicity.
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