
Research Statement
My research interests are rooted in the analysis of partial differential equations (PDEs), particularly of hy-

drodynamic or geophysical equations, such as the incompressible Navier-Stokes or Euler equations, the surface
quasi-geostrophic (SQG) equations, or various related equations, such as chemotaxis equations that incorporate
the effects from interaction of an organism with an ambient incompressible fluid, and dispersive equations that
incorporate weak damping mechanisms. A large source of inspiration derives from the mathematics of turbu-
lence through the characterization of small length scales, manifestations of finite-dimensionality in the long-time
regime, as well as its applications, for instance, to dissipative dynamical systems, data assimilation (DA), or
parameter estimation. In order treat these various considerations, my work often employs tools and techniques
from harmonic analysis, elliptic, parabolic, and hyperbolic equation theory, infinite-dimensional analysis, ap-
proximation theory, and control theory. Due to the interdisciplinary nature of my work, it is also accompanied
and at times driven by computational efforts. Generally speaking, my research moves along three interrelated
directions: (I) Well-posedness and Regularity, (II) Long-time Behavior: Deterministic and Statistical, (III) Ap-
plications to DA and Parameter Estimation. In what follows, I describe selected works in each direction, identify
how perspectives from turbulence enter some of them, and mention current investigations and future ones that
emanate from them.

1. Well-posedness and Regularity

Well-posedness of the Cauchy initial value problem (IVP) is a fundamental issue in the study of evolutionary
equations as it asserts the existence, uniqueness, and continuity with respect to initial data of solutions. In
hydrodynamics, this most basic form of validation for a physical model has yet to be fully settled for the
equations of motion for a three-dimensional (3D), incompressible viscous fluid, that is, the 3D Navier-Stokes
equations (NSE). In Rd, d = 2, 3, one has

∂tu− ν∆u+ (u· ∇)u+∇p = 0, ∇·u = 0, u(0, x) = u0(x), (1.1)

where u = u(t, x) denotes the velocity vector field of the fluid, ∇·u = 0 expresses its incompressibility, p is
the scalar pressure field, u0 is the initial velocity field, ν is the kinematic viscosity, and (1.1) is appropriately
supplemented wtih decay at infinity. The case ν = 0 corresponds to the Euler equations and is referred to as the
inviscid case. Although global-in-time existence and uniqueness of weak solutions is known in 2D [84], and in 3D,
global existence of weak solutions satisfying an energy inequality [62, 84] and local existence and uniqueness of
strong solutions to (1.1) is known [45,54,65,73,77], the problem of whether such weak solutions are unique when
ν > 0 or if singularities can develop for strong solutions in finite time have been outstanding open problems since
the equations were conceived in the 19th century. The latter is known as the global regularity problem for the 3D
NSE and is listed by the Clay Mathematics Institute alongside the Riemann Hypothesis, the Hodge Conjecture,
and several others as one of the great unsolved problems in mathematics. The study of the well-posedness
of (1.1) continues to be a rich vein of research and source of mathematical problems, as evidenced by recent
breakthroughs in its understanding: non-uniqueness of weak solutions to 3D Euler [19,39,64], of 3D NSE [20,28],
loss of continuity with respect to initial data for 3D Euler [17,47,48] and 3D NSE [18], and finite-time blow-up
in the Hölder class to 3D Euler [46].
Contributions. One arm of my research is dedicated to shedding light on well-posedness and regularity
properties of hydrodynamic equations and related systems. These models share some structural similarities
to (1.1), but typically enjoy a reduced dimensionality or other regularizing mechanisms. One important family
of such models are given by the generalized SQG (gSQG) equations (see [24–26]):

∂tθ + γΛκθ + (u· ∇)θ = 0, u = −∇⊥Λβ−2θ, θ(0, x) = θ0(x), (1.2)

where κ ∈ (0, 1), β ∈ [0, 2), γ ≥ 0, and θ = θ(t, x) is a scalar. We refer to γ = 0 as the inviscid gSQG. In
the inviscid case, (1.2) interpolates between 2D Euler (β = 0) and the SQG (β = 1), then extrapolates beyond
with an increasingly singular constitutive law. A great deal of effort has gone towards the understanding of
the well-posedness of (1.2) since its introduction to the mathematical community by Constantin, Majda, and
Tabak [31], especially due to its structural analogy to (1.1) in 3D when β = 1 and either κ = 1 (to NSE) or
γ = 0 (to Euler) (see, for instance, [21, 32–36,66,74–76,91]).

In a series of works with collaborators [13, 67, 68, 82], we probe the relation between the dissipation and
constitutive law in terms of well-posedness. The choice of functional setting is one of borderline regularity in the
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sense that it is the lowest level of regularity for which one can expect well-posedness; it is typically characterized
by the scaling symmetry of the equation. At or below the level of critical regularity well-posedness can either
fail or hold in various ways: non-existence, non-uniqueness, or loss of continuity with respect to initial data.
On the other hand, due to the non-negative definite nature of the dissipation, smoothing effects also arise; the
extent to which this phenomenon still holds at borderline regularity constitutes one of the motivations for these
works. For this, it is convenient to consider the following generalization to (1.2):

∂tθ + γm(D)θ + (u· ∇)θ = 0, u = −∇⊥a(D)θ, (1.3)

where F(m(D)θ)(ξ) = m(ξ)(Fθ)(ξ), and m(D), a(D) are non-negative, radial multiplier operators. The main
achievements are two-fold. Firstly, we extend results in L2–based settings to Lp–based ones [13], which crucially
exploits insights in bilinear multiplier operator theory. Secondly, in [67,68,82], we treat the most singular regimes
of the constitutive law, which had hitherto been left open in borderline regularity settings apparently due to lack
of a proper way to approximate solutions that sufficiently respects the underlying the commutator structure of
the equations; we identify such an approximation scheme to provide a comprehensive study of well-posedness.

1. (m(D) = Λκ, a(D) = Λ−1, κ ∈ (0, 1)) In this case, (1.3) possesses a scaling symmetry, θλ = λκ−1θ(λκt, λx).
We study the supercritical regime, κ < 1 in [13] and show that (1.3) has local existence and uniqueness
for large data in the scaling-critical Besov space, Ḃ1+2/p−κ

p,q (R2), for 2 ≤ p < ∞ and 1 ≤ q ≤ ∞, and
global existence and uniqueness for small data. In spite of supercriticality, we show that the maximal spatial
regularity arising from the parabolic operator L = ∂t + γΛκ is conferred instantaneously. In doing so, we
extend the technique of Gevrey norms developed in [52] from L2–based Sobolev spaces to Lp–based Besov
spaces. Due to supercriticality, new commutator estimates were needed, particularly for estimates in Besov–
based Gevrey classes. The novelty was to view the commutator as a bilinear multiplier operator and verify a
Marcinkiewicz-type condition. Owing to various localizations arising from working in the Besov space setting,
we show that this condition is sufficient to obtain Lp × Lq → Lr–type bounds, even though it is well-known
that such bilinear operators do not satisfy any such bounds in general [57]. Our result also complements ones
in the critical space setting previous to this for the 3D NSE [3,55] and 2D subcritical SQG [43].

2. (m(D) = Λκ, a(D) = Λβ−2, β ∈ (0, 1)) Again, (1.3) has a scaling symmetry, θλ = λκ−βθ(λκt, λx) and
in [68] we establish results analogous to those in [13], but in the setting of scaling-critical Sobolev spaces,
Ḣβ+1−κ(R2). This extends the results in [9, 90] to the most singular range of the gSQG family. Due to
the more singular nature of the constitutive law, the commutator structure of (1.3) is exploited in a more
nuanced manner. The commutators identified in [24,63] allow one to carry out an apriori analysis. However,
the scaling-critical setting still requires one to construct the solution. Since stability–type estimates for (1.3)
at critical regularity are not known, one cannot simply carry out a density argument with smooth initial data.
We overcome this by proposing a linear conservation law that approximates the inviscid part of the system
such that the divergence of its flux collapses to the original advective term in the limit. This approximation
scheme suitably preserves the underlying commutator structure and ultimately allows for the construction
of solutions to (1.3) at critical regularity. Our analysis identifies an additional structural criticality when
κ = β − 1; above this line, (1.3) exhibits a “strongly” quasilinear structure since its “coefficients” have an
order that strictly exceeds the order of the linear part; below it, the approximation procedure is classical. We
would now like to extend these results to the Lp setting and carry out the critical space program of the 3D
NSE to the 2D gSQG.

3. (m(D) = 0, a(D) = logµ(e −∆)Λβ−2, µ ∈ (1/2,∞), β ∈ (1, 2)) Then (1.3) is inviscid with constitutive law
mildly regularized by a power of a log-laplacian. In [67], we show that (1.3) is locally well-posed in the
borderline Sobolev space, Hβ+1(R2), that is, one has existence, uniqueness, as well as continuity with respect
to initial data. This extends the work [27], which establishes local well-posedness for β ∈ [0, 1]. The most
important distinction between β ∈ [0, 1] and β ∈ (1, 2) does not arise in the apriori analysis, but rather in
proving stability. Indeed, in [27] continuity with respect to initial data follows by classical means (see [85]).
Such an approach fails in range β ∈ (1, 2) and it becomes crucial to exploit the commutator structure of
(1.3). We do this by modifying a splitting technique of Kato [72] for symmetric hyperbolic systems that
preserves the more nuanced commutator structure of the equation. We would like to explore other forms of
mild regularization of systems and attempt to characterize the phenomenon of borderline well-posedness.
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2. Long-time Behavior: Deterministic and Statistical

According to the Kolmogorov 1941 theory of 3D turbulence [78,79], energy cascades from large scales to small
scales through a nonlinear mechanism. This cascade should then extend down to the so-called dissipation length
scale, which indicates the scale at which nonlinear energy transfer is in an exact balance with viscous dissipation.
At this scale, the energy spectrum experiences an exponential drop-off. Kolmogorov posited that this length
scale, `Kol, is uniquely determined by the viscosity and the average rate of energy dissipation in the flow. In
particular, `Kol represents the smallest relevant length scale in the system. From this, Landau and Lifshitz [83]
defined the number of degrees of freedom, NLL, to be the total number of eddies of this size that saturate the
size of the domain, `3dom (if the domain is a box), so that NLL = (`dom/`Kol)

3. Kolmogorov’s phenomenology
of 3D turbulence, as well as its 2D counterpart by Batchelor-Kraichnan [6, 80], have provided a rich source of
mathematical investigations, particularly through providing rigorous confirmation of these predictions directly
through the equations of motions themselves [4, 5, 7, 8, 29,30,37,38,42].

Contributions. A second arm of my research is therefore focused on either studying these issues directly or
else attempting to capture various features of the long-time behavior of solutions to hydrodynamic and related
systems that are either deterministically or stochastically perturbed. Indeed, “turbulence” in a general sense is
a phenomenon where the scales at which energy is injected and those where energy is dissipated are separated
far away and realizable only in a “permanent” regime often characterized by passage to the infinite-time limit.
It is therefore natural and fundamental to the study of turbulence to consider various setups for the energy
injection and dissipation. These variations can be realized by deterministic or stochastic perturbations of the
equation or through considering different forms of dissipation, either through viscous dissipation or various forms
of damping. These studies are performed in a series of works dating back to my Ph.D. thesis [11] and continuing
in [56,60,61,70]. I also study forms of stability in other systems arising in chemotaxis in [1, 87,88,93].

In the following, I describe three representative works that address these issues. The main achievements in this
direction are in 1) obtaining refined estimates on the dissipation length scale of Kolmogorov for 3D turbulent flows
and Kraichnan for 2D turbulent flows through a unified framework for estimating the real analyticity radius
of solutions [11], 2) studying a particular manifestation of finite-dimensionality of dynamics in a geophysical
scenario, where dissipation is given by a non-local operator, in order to imbed the dynamics of (1.2) into that
of an ODE [70], and 3) verifying the ergodic hypothesis for a weakly-damped, stochastically forced system by
greatly expanding an approach developed originally developed for strongly-dissipative systems [56].

4. In [11], the Gevrey-norm technique of Foias and Temam [52] is adapted to a Wiener algebra framework,
i.e., L1–based, to obtain refined estimates on the real analyticity radius, `a, for the (1.1) over a periodic
domain in any spatial dimension. Estimates on `a yield estimates on the corresponding dissipation wave-
number, κa = `−1a . This subsequently indicates where the energy spectrum experiences exponential decay,
which ultimately leads to an upper bound estimate on NLL. This point of view was developed in several
works [11,14,15,41,52,58,59,81]. In [11], we prove

`a & `4Kol (in 3D) and `a & `2Kr (in 2D), (2.1)

for turbulent flows that satisfy (1.1) in a periodic domain, where `Kr refers to the Kraichnan dissipation
length scale, which is the 2D analog of the Kolmogorov dissipation length scale represented by `Kol. The
best-to-date estimates for `Kr in the periodic setting were obtained in [81] resorting to complex-analytic
techniques. While the work of [41] established the best-to-date estimates for `Kol in the same setting, but
with an L2–based Gevrey-norm approach in the same setting. These estimates are captured by (2.1). Hence,
our result unifies the results of [41] in 3D and [81] in 2D under a single framework. Moreover, our method
exposes a new path to lowering the above exponents closer to 1, namely, by improving higher-order estimates
of the flow in the long-time average, which would appeal to a statistical framework of turbulence. This makes
revisiting the stochastically forced case, as originally studied in [89], a compelling future venture.

5. In the work [70], we establish the existence of a determining form (DF) for the subcritical SQG equation,
i.e., (1.2), κ ∈ (1, 2) and β = 1, that is induced by a feedback control system (see (3.2)). A DF is an ODE,
albeit in a Banach space of trajectories, that subsumes the global attractor of the original equation in a
certain way. Motivated by finite dimensionality of the dynamics of 2D NSE manifested through “asymptotic
enslavement of scales” [51], the notion of DFs was introduced in [50,53]. A stronger formulation of the notion
of enslavement of scales is embodied in the existence of an inertial form, (IF) which is a finite-dimensional
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system of ODEs governing the large scale evolution that is fully decoupled from the small scale evolution.
However, the existence of an IF for (1.1) in 2D has been an outstanding open problem.

In [70], we specifically show that there exist Banach spaces, X,Y , and a map W : X → Y , which is the
solution operator of (3.2) corresponding to a “reference solution,” u ∈ X, such that IhW : BρX(0) → Y is
Lipschitz, for some ball of radius ρ > 0, centered at 0 in X, where Ih is given by (smooth) projection onto
Fourier modes |k| ≤ 21/h. It then follows from [53], for instance, that the equation given by

dv(· )
dτ

(τ) = −‖v( · )(τ)− IhW (v( · )(τ))‖2X(v(· )(τ)− Ihθ∗), v(0) = v0 ∈ BρX(0). (2.2)

is defined by a right-hand that is Lipschitz and hence, defines an ODE in X, where θ∗ is a given steady state
of (1.2). Our proof that (2.2) defines an ODE hinges on obtaining uniform estimates in L∞ for solutions
to (3.2) independent of the number of modes m ∼ 21/h. Indeed, the Lp–maximum principle one is able to
derive for (3.2) depends on the number of modes, which precludes one from using these bounds to establish
the Lipschitz property. Nevertheless, by appealing to harmonic analysis tools, we show that one can adapt
De Giorgi techniques [21] to deduce uniform L∞–bounds independent of m. Interestingly, the mechanism of
asymptotic enslavement is also a crucial ingredient to establishing uniqueness of invariant measures for the
2D NSE. We would therefore like the study the extent to which the identification of a DF can provide any
computational or theoretical gain in understanding invariant measures of stochastically perturbed systems.

6. In [56], existence and uniqueness of invariant probability measures is proved for the damped-driven Korteweg-
de Vries (KdV) equation

du+ (γu+ uxxx + uux)dt = fdt+ σdW, (2.3)

where a large, but finite number N = N(γ)� 1 of Fourier modes are stochastically forced. Here, u represents
an amplitude, γ > 0 captures damping effects, f is an external, time-independent deterministic forcing, and
σW =

∑N
j=1 σjWj is a Wiener process such that

∑N
j=1‖σj‖2H2 < ∞ and each Wj = Wj(t) is a 1D standard

Brownian motion. A typical assumption made in studying of turbulence is to assume ergodicity of its
dynamics. This assumption asserts that long-time averages can be equated with ensemble averages, that is,
averages over all possible states of the system, and is often referred to as the ergodic hypothesis. Since ergodic
invariant measures form the extremal points of the set of invariant probability measures, uniqueness of such
measures guarantees its ergodicity. In [56], we thus verify the ergodic hypothesis for (2.3).

The propagation of the noise through the system, which is crucial to establishing uniqueness, is well-
understood for the 2D NSE [44] and arises due to the balance achieved between heat dissipation and nonlinear
effects that manifests in the asymptotic enslavement property described earlier. However, the mechanism
through which this arises for (2.3) is very different since the form of dissipation is categorically weaker than
the laplacian. Our analysis thus sheds light on the relation between the contractivity property implied by
asymptotic enslavement and that of unique ergodicity. Our proof adopts an asymptotic coupling approach
developed which had been successfully developed for a number of strongly dissipative systems such as the
2D NSE. In this approach, a coupling is designed so that one process asymptotically synchronizes with the
original one. Before [56], it was not known whether this approach could be applied to systems such as (2.3).

This result is only the second of such results for weakly dissipative systems like KdV, the first being [40]
for the damped-driven nonlinear Schrödinger (NLS) equation. However, the approach in [40] constructed a
highly technical exact coupling. In contrast, we effectively observe that by relaxing the form of coupling,
one obtains approach that is both conceptually simpler and paradigmatic. As a byproduct of our analysis,
we also obtain regularity of the invariant measure, which in the literature is often proved as a result on its
own. On the other hand, mixing rates for the Markov semigroup associated to (2.3) are currently not known;
this remains an ongoing investigation. Other related considerations such as controllability of (2.3) and the
“hypoelliptic” case, i.e., N is independent of γ, raise important questions that we continue to pursue.

3. A Feedback-Control Paradigm for Synchronization

An effective approach for studying problems in DA for partial differential equations was developed by Azounai,
Olson, and Titi in [2]: Suppose that u represents a physical phenomenon governed by the following system

du

dt
= F (u), (3.1)
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except that the initial data u0 has not been provided and is thus, unknown. One instead considers the system

dv

dt
= F (v)− µIh(v) + µIh(u), v(0) = v0, (3.2)

where v0 is any initial condition, µ = µ(h) > 0 is a “tuning parameter,” and Ih(u) represents the collected
observations. Typically, Ih represents linear projection onto finitely many nodal values or spectral modes and h
quantifies observational density; it suitably interpolates observations into the phase space of (3.1) and facilitates
its insertion into the model. Then by integrating (3.2) forward in time, one obtains an approximation, v, to the
reference solution, u, that is, v synchronizes with u.

Contributions. The main results achieved in this component of my research are 1) extension of the feedback-
control approach to accommodate increasingly physical forms of observation [10, 16, 69, 71], 2) proof of that
synchronization is in fact typically achieved in all higher-order topologies [12], 3) rigorously study scenarios of
model error [49], and 4) develop and provide convergence analysis of algorithms for parameter estimation in
nonlinear systems [23,86]. We describe three representative results below.

7. In [16, 69], we modify the feedback control system (3.2) to accommodate the more physical case of time-
averaged modal observables with a delay, i.e., Īh = 1

δ

∫ t−δ
t−2δ Ih, where Ih is given by projection onto finitely

many Fourier modes. Indeed, this is motivated by the fact that measurement devices used to collect data,
e.g. wind velocity, temperature, is manifestly averaged in time. We prove synchronization occurs in spite of
the delay and with essentially the same number of modes as the case of instantaneous-in-time measurements,
provided the averaging window, δ, is sufficiently small. We overcome difficulties introduced by the temporal
non-locality in Īh by controlling the time-derivative at large scales, and establishing a non-local Gronwall
inequality. We study this in the case of the Lorenz system [16] and (1.2) when γ > 0, κ > 1 = β [69]; the
latter case requires us to establish new approximation inequalities involving fractional derivatives (see [71]).
We would now like to a system with memory, which may interact with the delay in an interesting way.

8. In [49], we study a situation of model error in the context of the 3D Bousinessq equations for Rayleigh-Bénard
convection, which, in non-dimensionalized variables, is given by

1

Pr
[∂tu+ (u· ∇)u]−∆u = −∇p+ Ra e3T, ∇·u = 0, ∂tT + u· ∇T −∆T = 0, (3.3)

over the domain Ω = [0, L]2 × [0, 1], where T denotes temperature and forces the fluid with velocity u
through buoyancy effects by heating at the bottom boundary and cooling at the top, with Dirichlet boundary
conditions for u in vertical direction. The Prandtl number, Pr, captures the relative strength of viscosity to
thermal diffusivity, while the Rayleigh number, Ra, captures the strength of the buoyancy. On geological
time scales, the earth’s mantle can be viewed as an incompressible fluid. When Pr =∞, (3.3) models mantle
flow with convective effects due to heating by the earth’s core. The situation of model error conceived in [49]
is that of temperature-only observations corresponding to the large, but finite–Pr system, but where (3.2) is
implemented through the Pr = ∞ system. Although global regularity of (3.3) is not known when Pr < ∞,
we exploit the property of eventual regularization [92] to establish synchronization up to an error depending
on Pr,Ra. A battery of numerical experiments probing the relationship between µ,Pr,Ra is also carried out.
This line of investigation in other geophysical situations when rotation or stratification effects are present are
currently being explored.

9. In [23, 86], we study the problem of estimating unknown parameters of nonlinear dynamical systems when
knowledge of only a subset of state variables is given as time series. The algorithm of interest is the one
introduced in [22] for the 2D NSE based on the feedback-control paradigm (3.2) that proposes increasingly
accurate values of the unknown viscosity at judiciously chosen times. Although a sensitivity-type analysis
was performed alongside a number of numerical tests that study the efficacy of the algorithm for the 2D
NSE, a proof of convergence remained open. This was finally achieved in [23] and [86]. The proofs rely on a
non-degeneracy (ND) condition to be satisfied at the times when updates to parameter value are made. This
condition is numerically probed in the case of the Lorenz system, where we observe that the ND condition holds
in favorable parameter regimes. These results appear to be the first of their kind for parameter estimation
in nonlinear equations and opens the door to rigorous proofs of convergence for other systems.
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