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High-frequency data in finance is often characterized by fast fluctuations
and noise (see, e.g., [7]), a trait that is known to make the volatility of
the data very hard o estimate (see, e.g., [131). Although this characteristic
creates many challenges in modeling, it offers itself to the study of distin-
guishing “signal” from “noise,” a topic of interest in the arca of guickest
detection (see [25], [S]). One of the most popular algorithms used in quick-
est detection is known as the cumulative sum (CUSUM) stopping rule first
introduced by Page [24]. In this work, we employ a sequence of CUSUM
stopping rules to construct an online trading strategy. This strategy takes
advantage of the relatively frequent number of alarms CUSUM stopping
times may provide when applied to high-frequency data as a result of the
fast fluctuations present therein. The trading strategy implemented settles
frequently and thus eliminates the risk of large positions. This makes the

Handbook of High-Frequency Trading and Modeling in Finance, First Edition,
Edited by tonut Florescu, Maria C. Mariani, H. Eugene Stanley and Frederi G, Viens,
©3 2016 fohn Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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strategy implementable in practice. Prior work has been done by Lam
and Yam [20] on drawing connections between CUSUM techniques and
the filter trading strategy, yet both the filter trading strategy (see [2, 3]),
or its equivalent, the buy and hold strategy (see [12]), run high risks of
great losses mainly due to the randomness associated with settling. The
well-known trailing stops strategy whose properties have been thoroughly
studied in the literature (see, e.g., [15] or [1]) is also related to the filter
strategy and thus suffers similar risks.

Although our proposed rule presents clear merits in terms of minimiz-
ing the risk of large positions by taking advantage of the high volatility
frequently present in high-frequency data, the main purpose of this chapter
is to present and illustrate the use of detection techniques (in this case the
CUSUM) in high-frequency finance. In particular, the strategy proposed
is based on running in parallel two CUSUM stopping rules: one detects
an upward (+) change and the other a downward (—) change in the mean
of the observations. Once an upward/downward CUSUM alarm (called a
“signal”) goes off, there is a buy/short sale of one unit of the underlying
asset. At that moment, we repeat a CUSUM stopping rule, and for every
alarm of the same sign, we continue buying or short selling one unit of the
underlying asset until a CUSUM alarm of the opposite sign is set off, at
which time we sell off all of what we bought or buy up all of what we short
sold. The high frequency of CUSUM alarms in high-frequency tick data
permits the implementation of this rule in practice since large exposures
on one side, whether on the buy or on the sell side, are settled relatively
quickly.

The algorithmic strategy proposed is applied on real tick data of a
30-year asset and a 5-year note sold at auction on various individual days.
It is seen that the algorithm is most profitable in the presence of upward
or downward trends (which we call “subperiods”), even in the presence
of noise, and is less profitable on periods of price stability. The proposed
strategy s, in fact, a trend-following algorithm.

To quantify the performance of the proposed algorithmic strategy,
we calculate its expected reward in a simple random walk model. Our
diagnostic plots indicate that the more biased the random walk is, the more
profitable the proposed strategy becomes, which is consistent with the
actual findings when the strategy is applied to real data. This is because in
the presence of a bias, trends are more likely to form than in the absence
of a bias.
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We take the analytical approach of discrete data and a linear random
walk model, rather than taking the continuous approach via, for exam-
ple, the geometric Brownian motion model, because we are analyzing
the movement of individual ticks of a price, quantized in a linear fash-
ion (e.g., at the level of | cent, :‘-7- cent, or (lJ' cent). Our models focus
on tracking the motion of an asset price via these ticks, and so a linear
approach is a more realistic setting, when short interest rate effects would be
minimal.

We begin our analysis in Section 1.2 by describing a general trading
strategy based on following upward or downward trends in a data stream,
without specifying the timing mechanism behind such a strategy. We then
develop the notion of gain over the time period of an individual trend. In
Section 1.3, we build a timing scheme stemming from quickest detection
considerations and give a preliminary performance evaluation of the overall
strategy on real tick data. Next, in Section 1.4, we analyze the specific case
of random walk-based data and calculate the expected value of the gain
over a trend in this case. We give an explicit formula for this gain in the
special case of simple asymmetric random walk on asset tick changes.
Then, in Section 1.5, we give results of Monte Carlo simulations for the
asymmetric lazy simple random walk and symmetric lazy random walk
on tick changes. In Section 1.6, we discuss the effect of the CUSUM
threshold parameter on the trading strategy. We conclude in Section 1.7
by a discussion of ways in which the proposed strategy may be improved
with suggestions for further work.

1.2 A trend-based trading strategy

Let {S,},-0,,.. be a sequence of data points; for our purposes, they will
be samples of the price of an asset. We assume that S, = s is a constant,
and S, = 0 for some k implies that S, = 0 for all n > k. Let T, = 0, and
define T, k = 1,2, ... as an increasing sequence of (stopping) times, called
signals, noting some trend in the sequence. We call 7), the k-th signal.

1.2.1 SIGNALING AND TRENDS

In this subsection, we construct a trading strategy in the case that there
are two types of signals: *“+ signals™ (declaring the detection of an upward
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trend in the data) and “— signals” (declaring the detection of a downward
trend in the data). Let “Property +(k)” be the property that causes a + signal
to occur as the kth signal, and denote this event by {7, = ’I‘,‘(*}. Likewise,
let “Property —(k)” be the property that causes a — signal to occur as the
k-th signal, and denote this by {7} = T,"}. Only one type of trend can be
detected at a time, so we formally define T]:r and T by

T+ = T, if Property + (k) occurs (1.1
k"7 ] oo if Property — (k) occurs o
T = T, if Property — (k) occurs (1.2)
k "7} oo if Property + (k) occurs S

Thus, T, = T]:r AT, forevery k = 1,2, ...

Next, we state what it means for the data to stay in a trend. We define
the sequence of signal indices a(/) as follows: let @(0) = 0, so Ty, = 0,
and for [ > 1, with k > 2, define the properties

“Property + (Lk)": T; =T foreverya(l=1)<j<kand T, = s
“Property —(Lk)”: T; = T;r foreverya(l - 1) <j<kand T, =T .

Then, we define the Ith shift point as, for [ = 1,2, ...,

a(l) := inf {k > a(l — 1)+ 2: Property + ([, k) or Property — (/, k) holds}.
(1.3)

Note that T, is at least two signals after T;,_y). Definition (1.3) is equiv-

alent to

a(l) == inf {k > a(l - 1) + 2:T} has different sign than 7}, a(/ = 1) <j <k}.
(1.4)

A sequence of the same type of signal will be called a subperiod of the
sample points. A shift point denotes the end of a subperiod of the same
type of signal.

Let A, be the number of shares of the asset S held at time 1. Set Ay = 0.
Note that, for every n € (T, Ty 1)), the sign of A, is invariant, that is,
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either A, > 0 holds for every n € (T, Tp41)) 0r A, < 0 holds for every

ne (-[a(l)’ Toayny)-
Our trading strategy is as follows:

A if no signal attime n, ie. n# T  Vj (no change)
A+ 1 ifn=T= ’1;.* forsome j, a(l) <j < a(l+1)
for some / (buy one during a + subperiod)
A= J A,=1ifn=T= 'I;.‘ forsomej, a(l) <j < a(l+1) (1.5)
for some / (sell one during a — subperiod)
0 ifn=",, forsome /2 I

(buy-up if T+ ) sell-off if T“”))

We assume a market in which all market orders are instantly fulfilled. The
intent of this strategy is to profit from following subperiods of + or —
signals by the old adage “buy low, sell high.” The success of this strategy
relies mainly on the length of such subperiods.

1.2.2 GAIN OVER A SUBPERIOD

We wish to analyze the gain G, [ = 1,2, ..., for this trading strategy over
the time period (7,,_y), Tyl called sul)penod [; this is the amount of
cash earned or lost by liquidating the transactions made from signals
Toatonyers oo Tagpy @ Ty

Note that a subperiod is determined by the first signal on that run;
if T, = 'I‘i*, then the run from signal 1 to signal (1) — 1 1s a “bull run”
subperiod of individual buy orders followed by a sell-off at time T, =
[‘”), if 7, =T/, thenthisrunisa “bear mn" subperiod of individual short
sales followed by a buy-up at 7, = u) Define G, to be the gain on
subperiod I; thus, G, is the gain on the first subperiod, starting at signal
Ty+1 = T, and ending at signal T . We require, as a condition, the sign
of the first signal of the subperiod. Let ¢ 2 0 be the percentage cost per
transaction, and define

A, = , YVii=al)—all-1)—1. (1.6)

l ”‘u'/‘l)rl:'l‘,,]/;],u }
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The gain on a subperiod is calculated as follows:

=) Tt S~ (T + o) —all= 1) = DSy,

‘f Tog-iye1 = 7a(1 141 -
(I-oalhy—al~1)= DSy, =1+ TS

if Togoiyer = ooy

- (I-C)E ST o (1+6)(Y1)S7:, i Tog-tyr = Togonr
(1=eXY)Sy, —~(1+ )T, Sy

Jrat=11

if Tomnyer = Tauo i
(1.7)

For example, if ¢ =0.01, T, = T+, and a(1) =4, then T, =T, =T,.
Say the prices at the buy-signal times are Sy, =5,8, =7,5;, = 9, and we
sell everything off at §7 = 8. Then Ay, —0 Ap =1, Ap, _2 Ay =3,
and we liquidate at time 7, to Ay, = 0. The gain on the first subperiod
would then be G, = (0.99)(3)(8) — (1.01)(5 +7 + 9) = 2.55.

Combining the | —¢ terms and adding on the random variable
ZCY,SQ(T[), we have after some algebra a sum of price increments:

Y
G[ + ZCY[S(I(']'[) = (C. + (_I)Al) [YIST,,(“ - Z ST,mtl—l)]
(1.8)

j=1

((' + (_1),‘ 2(51 atl) ‘ /H(I 1))

We can rewrite each difference in the sum as a telescoping sum: setting

Zv = AS'[

K k+1

_SIK, k=1,2,..., (]-9)

as the incremental price change between signals k and k + 1, we have

a(l)-1 all)~1
67}1(1, — S7}+a((—1) puecd Z (3]"”[ Z lk Z Zk-HI([ ])
k=j+a(l-1) k=j+all-1)

Substituting this back into (1.8) yields

Y, T alli~1
G,+2CY,SH(,,])=(c+(—1)f‘z)2[ > Zk} (c+ (=Dt ZJ jrati-1):
: k

j=1 | k=j+ali-1)
(1.10)
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Therefore, by (1.11), the gain over subperiod / is
YI
G = (c+(=1)") ijijl) = 2¢Y Syery- (L.1h
j=1

Note that, in the absence of transaction costs (i.e., ¢ = 0), the expected
gain G, is entirely determined by price increments and the sign of the first
signal of the subperiod.

1.3 CUSUM timing

Next, we describe a version of the CUSUM statistic process and its associ-
ated CUSUM stopping rule, which we will use to devise a timing scheme
based on the quickest detection of trends, and incorporate this scheme to
our trading strategy.

1.3.1 CUSUM PROCESS AND STOPPING TIME

In this section, we begin by introducing the measurable space (L, F),
where Q = R®, F =U, T, and F,, = o{Y,,i € {0, 1,...,n}}. The law of
the sequence Y,, i = [, ..., is described by the family of probability mea-
sures { P, }, v € W™, In other words, the probability measure P, for a given
v > 0, playing the role of the change point, is the measure generated on Q
by the sequence Y, i = I,..., when the distribution of the Y;’s changes at
time v. The probability measures P, and P are the measures generated
on by the random variables ¥; when they have an identical distribution.
In other words, the system defined by the sequence Y; undergoes a “regime
change” from the distribution P to the distribution P at the change point
time v.

The CUSUM statistic is defined as the maximum of the log-likelihood
ratio of the measure P, to the measure P, on the o-algebra 7. That is,

dP,
C, := max log

n )
Ozvsn dr g r,

(1.12)

is the CUSUM statistic on the o-algebra T°,. The CUSUM statistic process
is then the collection of the CUSUM statistics {C, } of (1.12) forn =1, ....
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The CUSUM stopping rule is then

o dP,
T(h) = int {n > 0: max log —

Zh}, (1.13)
0<vgn ar g \r

n

for some threshold 4 > 0. In the CUSUM stopping rule (1.13), the CUSUM
statistic process of (1.12) is initialized at

C, =0. (1.14)

The CUSUM statistic process was first introduced by Page [24] in the
form that it takes when the sequence of random variables ¥; is indepen-
dent and Gaussian; that is, ¥; ~ N(u, 1), i=1,2,..., with g = pg fori <v
and y =y, for i > v. Since its introduction by Page [24], the CUSUM
statistic process of (1.12) and its associated CUSUM stopping time of
(1.13) have been used in a plethora of applications where it is of interest to
perform detection of abrupt changes in the statistical behavior of observa-
tions in real time. Examples of such applications are signal processing (see
[10]), monitoring the outbreak of an epidemic (see [29]), financial surveil-
lance (see [14] and [9]), and more recently computer vision (see [19]
or [30]). The popularity of the CUSUM stopping time (1.13) is mainly
due to its low complexity and optimality properties (see, for instance,
[211, [22, 23], [6] and [27] or [26]), in both discrete and continuous time
models. :

As a specific example, we now derive the form in which Page [24]
introduced the CUSUM. To this effect, let ¥; ~ N(j,, o%) that change to
Y; ~ N(u;,c?) at the change point time v. We now proceed to derive the
form of the CUSUM statistic process (1.12) and its associated CUSUM
stopping time (1.13) in the example set forth in this section. To this effect, let
us now denote by ¢(x) = \/_‘?}ie—XZ/ 2 the Gaussian kernel. For the sequence

of random variables Y; given earlier, we can now compute (see also [28]
or [25]):

P
C, = max log v
0<ven dPoo

v—1 Y, ~u n Yi~u
Hi=l ¢< 16:) Hi:v(/)( lg |>
= gy g
7 svsn n Y~
,, Hl_:l ¢ ('_aﬁ>

_ X y + Hg
= 2 - X |- 251

(1.15)
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iy
2

In view of (1.14), we initialize the sequence (1.15) at Y, = and

proceed to distinguish the following two cases:

B Case I: p; > p: divide out p; — ,, multiply by the constant 62 in
(1.15), and use (1.13) to obtain the CUSUM stopping rule T :

Y, > ht (1.16)

1

n
THh*) =inf < n>0: max Z [

0<v<n

iy + 1y
— _2_

for an appropriately scaled threshold i+ > 0.
m Case 2: 4, < p: divide out p; — p,, multiply by the constant o in
(1.15), and use (1.13) to obtain the CUSUM stopping rule 7-:

- + u |
T=(h™)y=inf < n > 0: max [’—"———‘ﬁ—yi >h b (L17)

O<v<n 4 2
i=v

for an appropriately scaled threshold /1= > 0.

As shown in the study [24] or [11], we can reexpress the stopping times
(1.16) and (1.17) in terms of the recurrence relations

: i+ p
iy = 0; u, = max {(), U, + (Yn - i_l__:)_:‘__(g> } (1.18)

+ Hy
dy =0; d, := max {(), d, | - (Y,, - ﬁl—,—)—l—-‘l> } , (1.19)

which lead to

THh*y=inf{n>0:u,>n"}, (1.20)

T-th)Yy=inf{n>0:d =z h"}. (1.21)

L s

The sequences u, and d, of (1.18) and (1.19), respectively, form a
CUSUM according to the deviation of the monitored sequential observa-
tions Y, from the average of their pre- and postchange means. The first
time that one of these sequences reaches its threshold (in (1.20) or (1.21)),
the respective alarm 7 or 7 fires.

Although the stopping times (1.16) and (1.17) and their respective
equivalents (1.20) and (1.21) can be derived by formal CUSUM regime
change considerations using the example set forth in this section, they may
also be used as general nonparametric stopping rules directly applied to
sequential observations as seen in the study by Brodsky and Darkhovsky
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[8] or Devore [11]. The former can be used as a general stopping rule to
detect an upward change in the mean while the latter a downward one.
In many applications, it is of interest to monitor an upward or downward
change in the mean of sequential observations simultaneously. This gives
rise to the two-sided CUSUM (2-CUSUM), which was first introduced
by Barnard [4], and whose optimality properties have been established in
Hadjiliadis [17], Hadjiliadis and Moustakides [16], and Hadjiliadis et al.
[18]. In the context presented in this section, the 2-CUSUM stopping time
takes the form

THhH)Y AT (h), (1.22)

where T*(h*) appears in (1.20) and T~(h™) in (1.21). The symr_netric
version of the 2-CUSUM stopping time is that of (1.22) when ht=h"=h

1.3.2 A CUSUM TIMING SCHEME

We now apply the aforementioned CUSUM stopping rule of (1.22) to a
stream of data representing the value of the underlying asset without any
model assumptions. In other words, the underlying asset is not necessarily
assumed to be independent or normally distributed. That is, we apply the
forms (1.16) and (1.17) in a nonparametric fashion. Let M >0 denote
the “tick size” of the asset being monitored (presuming that S changes
in increments of M; we do not know the probability distribution of these
changes), and & > 0 be a given threshold. Given that S, = s, recall that
T, = 0. We monitor the progress of upward or downward adjustments in
the price S, of the underlying, by individual ticks.

In view of the previous subsection at time T}, gy is set to the value
of the underlying at time T}, namely p, =Sy, and puf = Sy, +M and
ll‘f =S8y, — M are the two “new” mean levels to be monitored against.
Thus, as in equations (1.18) and (1.19), which cumulate the deviations
of the monitored sequence from the average of their pre- and postchange
means, we now monitor the deviations of the underlying sequence S,
n=1,2..., from the quantities

(ST‘( + /W) + S'I‘k , M

n,lz . 5 =07 ?, (123)
o B TS, M
my = et = 5y —

L 2
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where k > 0. To this effect, set u(’; = dg’ =0, and for n > |, define the
CUSUM statistics
S X . ,
w, = max{0,u_ + (S, 5 —m)} (1.24)
ke o k -
df = max{0,d*_| = (S, —mH).
Thus, fork > 0, the CUSUM timing scheme for our trend-following trading
strategy is defined by using (1.20) and (1.21) (and coming from (1.1) and

(1.2)),

Property +(k+1): uf‘; > h; Property —(k+1): d,"l' >h

Jy ==min{n > 0: Property +(k+ 1)or —(k+ I)occurs} (1.25)
Tipy 1 =T+

In other words, each T, is the symmetric 2-CUSUM stopping time of
(1.22) for cycle k. Finally, at the “end of day,” that is, on the final tick,
we close out our position, inducing a final shift point to end trading, for
algorithmic purposes.

1.3.3 US TREASURY NOTES, CUSUM TIMING

The following figures and chart describe the CUSUM timing scheme (1.25)
applied to the trading strategy (1.5) for US Treasury notes sold at auction in
2011. Gains quoted are in increments of $1000. In Figure 1.1, we show the

100762
0.8 !r i
' Cumulative gain Gy + G, Cumulative :
0.7 gain Gy + G, + Gy
0.6 Gain Gy, run2
| |
0.5 ‘ i
| ' :
| .
04 Asset price Sn e >
Gain Gy, run 1 (dots are signals) , . L e ‘
‘.,,. L ’ PR T ¥ ’An !( ‘J i
et A JUR— I :
02 AT L e l f ‘
Lr et . ; N
Negative gain Gg, run 31— |
e et et e e ]
0 50 100 150 200 250

FIGURE 1.1 Plot of the first subpcriods, and cumulative gain, for the
CUSUM strategy, August 2, 2011, US 5-year treasury note,
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05
0.4 .
03 .
02
0.1 R

.
0 - 3 3 .

3
o {1 4 4 4 5 6 7 8 9 10

FIGURE 1.2 Lengths of subperiods versus gains, August 2, 2011, US 5-year
treasury note.

asset price, along with the number of shares held, per-subperiod gain, and
running total gain. Figures 1.2, 1.3, 1.4, 1.5 and 1.6 show the individual
subperiod gains, plotted by the number of signals during a subperiod, of
the gain for 5-year and 30-year treasury notes, and Figure 1.7 aggregates
the data from Figures 1.3, 1.4, 1.5 and 1.6 for 30-year notes.

1.4 Example: Random walk on ticks

We now describe a simple example to model the asset price motions.
Assume that 3N > 0 such that the sequence {X;},, are the steps of a

0.8
0.6
04

0.2 . 3

FIGURE 1.3 Subperiod length versus gain, July 29, 2011, US 30-year trea-
sury note,
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1
0.8 '
0.6 .
0.4 .
0.2 . : :
b »
; :
0 i j i
0 { 2 3 4 5 6 7 8
-0.2 ’ .

FIGURE 1.4 Subperiod length versus gain, August 1, 2011, US 30-year trea-
sury note.

random walk taking integer values bounded between —N and N, that is,
Ile < NforalljeN, and that X; € {=N,=N+1,..,N — 1, N} forevery
Jy with p, = P(X; = k) 2 0 and Z‘L_N pr=1. Let §=s, and forn > 1,
set S, =5+ 2;1:1 X;. We will consider S, to be a random walk on ticks,
rather than price itself, and so normalize tick sizeto M = 1.

Note that, since A, =0 < n=a(/) for some [ € {0,1,2,...}, the
expected gain over a subperiod is the expected gain over an excursion to
zero on A, and so we can simply consider the first excursion (independent
of other excursions) on the time interval (7, = 0,7,.,,]. Also, note that

08 .
0.6
04

0.2

o

- —is
[ XY
[
B v

FIGURE 1.5 Subperiod length versus gain, August 2, 2011, US 30-year trea-
sury note.
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25
2 >
15
; .
0.5 .,
3 )
0 i o
0o ! % 4 6 8 10 12 14
-05

FIGURE 1.6 Subperiod length versus gain, August 3, 2011, US 30-year trea-
sury note.

in this case, if the transaction cost ¢ = 0, the G, of (1.11) are 11D random
variables.
Set

pt=PT, =T, p~ =1 -pt =PI, =T)), (1.20)

and note that signal timing increments are independent. Conditioned on
the sign of signal a(l — 1) + 1 at time Tyq_yy,1, ¥ 1S @ geometric random

25
2
15
1
<0
0.5 , o+ i
. !
b !
0 2 4 , 6 8 10 12 14

FIGURE 1.7 Figures 1.3, 1.4, 1.5 and 1.6 combined (30-ycar).
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variable (starting at 1) which gives the number of signals of the same sign

in subperiod /. The distribution of ¥,, conditioned on 7 e 18
u )
- +
¥, geom(p™) i Toyyyy =T5,_ 1 (1.27)
geom(p™) il Ty, —l BIRIE
T 3 " 1¢ al 1 <3 IV)" -—"+ Ire 1
To explain this, consider the case 7,,_;,,, = T io1)4 (the first + signal of

a bull run subperiod): a subperiod of + has “failure” probability p* (a +
signal continues the subperiod with another buy) and “success” probability
p~ (a — signal causes a sell-off and ends the subperiod).

Apisan Fy - -measurable random variable, and every increment in
the sum in (1.1 l) ls independent of time T,,_;,,,. Finally, note that the ¥,
are independent of the walk up to time 7T,,,_,), and if ¢ = 0, so are the G,.

1.4.1 RANDOM WALK EXPECTED GAIN OVER A SUBPERIOD

We wish to examine the expected gain E(G),) over subperiod /. For simplic-
ity in our initial analysis, set ¢ = 0. Since the G, are [ID, we will calculate
E(G)). This is, since a(0)=0 and Y|, = a(l) ~a(0) = 1 = (1) - 1, by
(1.11),

i
EG)=E |(=)" Y jz; . (1.28)

We condition over the possible values of ¥, and A,. Note that the sign of
T, also determines the possibilities of Z; forj = 1,.,, - Yy = 1. Z; depends
on the type of subperiod it resides on, so by the fact that the cvcnt Y, =
n} e Fy - and by setting, forj = a(l - 1) + 1, ..., a(l),

b7 T o ,
B, = B T = Ty, =),

then, forn =1, 2, ..., we have

Y

e

T, =THY =n| =E Zj/ll,_rl,Y1~;1
|j=1

j=1
n
T, =T7,Y, :n} = DB,
j=1

= ZJL [
(1.30)
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Since the conditioning on B , (and, likewise, BT ) is based only on
the walk during the time mcrements (To, T\Jand (Tyy-n T Tl forn>1,
B+1 . andB , are numbers forj = 1,2, ...,n — 1. Also, for these J, B/ | are
the same by the strong Markov property at T;_, since the signs on the T,
are all +. However, since the signal T, = T,;, has different sign than 7,
B:,l,: has a different distribution. In fact, since this condition implies that
T =Ty =Ty B * | can be written by the strong Markov property
at T, = Ty s

Bt =E[Zrz‘T1=T1+,Y1=n]=E[ ‘Il—[ alD=n+1 = I;m

nlan

=E [Z/z Ta(l):n+l = Ta—(l)] B;l n
To simplify notation, we rewrite B = B* and By, = B~, since they do
not dependon n. Inthe case n = 1, we snmply have Bl =8 and By, | =

+_ and note that B* > 0 and B~ < 0. Thus, our sum (1.30) becomes

n—1
pt +
ZJ b Zij.ln+”Bn L.
j=1

- ”(”2 Dt 4 np.

Y|
WALE
=1

li

=n

s
]’
(1.31)

The only thing that needs to change for the analogous argument for b’j‘l )
are the signs; thus, we also have

T, =T0,Y, =n =”(”? Dp4npt. (132)

Y
E [Zfz,-

j=1

Next, we give the probability that ¥, = n, conditioned on the sign of
T,. This is easy, since we know that, conditioned on the signof 7, Y, is a
geometric random variable. By (1.27), forn = 1,2,...,

P(Y, =n| T =TF) =y~ (po)

o (1.33)
P(Y =n|T, =T7)=(p )" (p").
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By (1.31), (1.32), and (1.33), and recalling that p~ = 1 — p*, the expected
gain on a subperiod, given that the subperiod consists of n signals before a
liquidation, is

S
E(G,|Y, =n) =p*E [ijj

J=1

T, = T|+, Y, = nJ

Y]
-¢1[2ﬁ3n=rpn=4

j=1

- —
=p+("(”7 DB*+nB;>—P‘<”O; )B‘+HB+>

”(”+ l) + 4 - - - +
= - B~ B™).
5 (1)’ 2 B p )+n( B™) (1.34)

The probability that a subperiod lasts n signals, regardless of its sign, is,
by (1.27) and (1.33),

P(Y =n) = P(Y,=n|T,=THP(T,=T})+ P(Y,=n |1\ =T])P(T, =T,)

=@EH'PT)+ET)p), (1.35)

which also gives the expected number of same-sign signals in a

subperiod

~ - > . [)+ P
Um:ZMWFM=F+F. (1.36)

n=1

Note that this necessarily matches the calculation via conditioning on 7'’s
sign; that is, by (1.33),
Pt

E(Yl) = L‘(Yl I 7‘[ = 7vif—)/)+ + E()/] | ’]‘I = ’]‘]‘—)[)ﬁ = l)—_ -+ I_)T
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We can sum over all possible values n in (1.34), and use (1.35) to get
the expected gain of a subperiod in terms of p*, p~, B, and B™:

E(G)) = Y E(G, | Y, =nP(Y, =n)

n=1

_ Z [n(n+ 1) (B+p+ _B-p—) +n(B — B+)]
n=1

2
X ((p+)n(])—)+ (p_)'1@+))

M)

Note that, if p* = % (which holds for any symmetric random walk),
then E(G,) = 0,and as p* | Oorp™ 11, E(G)) — oo.

(1.37)

1.4.2 SIMPLE RANDOM WALK, CUSUM TIMING

We now calculate the expected return of the first subperiod for a sim-
ple random walk asset price, applying CUSUM timing. Set our CUSUM
threshold to = 1, and our probability measure to the simple asymmetric
random walk on ticks, that is, N = 1, with p, = p, p_, = 1 — p for some
0 <p < 1. With M = 1, we have by (1.23), for every k > 0,

1 ]
T Looad_qc
ny —S',v',_ + > ny, = 51k 5

Since X; € {~1,1} forevery 0 <j < Ty, the possible values of u}) and
0 i i
dj, by (1.24), are {0, %,2}, where a 2 occurs only with two consecutive
ticks of the same type (ending on an even step). T, is the first time 2j such
that ug, > 1 or dy, > 1. Hence,

Ty =T =2 e Xy ==X, V1 <k<2=1, Xy =Xy =1,
T\ =T" =2 e X, =X, Vhk1<k<2%-1, Xy =Xy=-1.

Given §; =5 > 0, Sz, can take only two possible values, from the
paths described earlier. For j = 1,2, ..., each possibility takes the form of
a geometric random variable conditioned on the final two steps X«,'] Xy

1
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S6=S+2
ud =2,d2 =0

S/=S
0 0 :
\ AN /7 u=d’=0,j=024

FIGURE 1.8 The four possible SRW paths for 'IT =2(3)=6

where a “failure” is a sequence of two steps of opposite direction; that is,
+1 then =1, or —1 then +1.

(T, =TF) < (S, =s+2)
P(Sy, =s+2, 17 =2) = [2p(1 = p)I~'p?
(T, =17} = (S, =s5-2);
P(Sy, =s=2,T; = 2j)=[2p(1 = p)V~}(1 = p)*.

(1.38)

An illustration of the paths leading to a “+” signal 77 is shown in
Figure 1.8, The probabilities of each value of S, occurring are

. - p:
PSS, =s+2 2p(l — I~ 1 S
Sy =s+2)= j;[ 2p(1 = p)} =3 T
< (1 -p)?
P(S, =s—2)= 2p(l — ’1(1—— "—__—.
Sy, =5-2) ,:En[ p(1 = p)l RM p T s

Since there is only one possible outcome per signal type, these match the
probabilities of each type of signal occurring:

5

b : P
P DT, =T =S, =s5+2)= —Ft .
(T =T1)) =P =5+2) I =2p(1=p)’
. (1.39)
pm =PIy =T) = P(S; =s=2)= (d=p

F=2p(1 - p)



20 CHAPTER | Trends and Trades

The increment Z, = Sy, — Sy, then takes values in {—2,2} and depends
on the sign of the signal of T, . Conditioned on this signal sign, and by
the strong Markov property at T;, we get the conditional expectations

Bt = EZ| Ty = T1,) = 2P(Sy —s=2| T, =T{) =2, (1.40)

B"=EZ, T, = Tk_+l) = —2P(.S'74] —s==21T,=T) = 2. (14D
Thus, by (1.34), (1.40), (1.41), and (1.37), we have the expected gain

2(1)4—(1—[))4) p? __(l—p)2
i—2pi—-p) A-p* P+ 1

EG) = (1.42)

which can be shown to be symmetric about its minimum p = % (at E(G)) =
We also have the expected time until a signal occurs: by (1.38) and
(1.39),

E(T | T, =TH =Y @HPT, =24 Ty =T))
=1
o P =2, T =T1+) _ 2p° -

=2)j — N jpl =y
& P(T, = T}) p+Z1 '
- 2’ 2
(I = 2p(=p)* 1 =D2p(1 =p)}’
2

E(T)) = E(Ty\ T, = THp* + E(T, | T, = T)p~
2

T =2p(l=p) (1.43)

Finally, the expected number of same-sign signals in a subperiod is,
by (1.36) and (1.39),

+

- 5 . ‘
E(Y1)=5)-:+p_+: L “‘P)’=p‘+(l—p)‘
p [) (] e p)" 1)2 ,)2( l _ I))?- .

(1.44)
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1.4.3 LAZY SIMPLE RANDOM WALK, CUSUM TIMING

Introducing a more complicated random walk distribution, such as a lazy
simple random walk, with step distribution

+1 with probability p,
X; =140 with probability p, (1.45)
—1 with probability p_,,

where p_; 4 py + p, = | increases the complexity of the analysis of the
CUSUM timing strategy probabilities, and therefore of calculating the
expected gain analytically. We will retain 1 = 1 and M = 1.

By introducing a zero tick, we expand the possible cases of “failure”
to set off a CUSUM signal. We decompose the lazy random walk path into
seven distinct possible components. First, there are three possible patterns
that fail to set off a signal, being “up-down™ (with probability p,p_,),
“down-up” (with probability p_,p,), and “zero” (a one-step pattern with
probability p,). Note that the first two of these are the two possible failure
patterns of (1.38). There are, consequently, four “success” patterns:

& the two from (1.38): "up-up” (with probability pf) and “down-down”
(with probability pzl )

v and two patterns with zero ticks: “up-zero” (with probability p,p,)
and “down-zero” (with probability p_,p,).

The number of such patterns that occurs up to asignal time is geometric.
Define

§*=pl 4 PL e+ poilo (1.46)

Fri= 1= 8" =2pp g +py (1.47)

as the respective signal-pattern success and failure probabilities. Then,
we define V; as the number of failure patterns until signal j = 1,2, ...
V; ~ geom(§*) (starting at 0), and, conditioned on V,, we define W, as the
number of zero-tick patterns that occur during this time frame. Since the W,
zero-ticks can take place at any pattern position of the V; patterns, WI’IV, ~
bin(V,, ;’i) Note that if p, = 0, this reduces to the case in the previous

section.
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We can calculate the expected time before a signal: if there are Vi
failure patterns (of length 1 or 2 ticks) before signal j, W; of these are the
1-tick zero-tick failures, and, finally, we have a 2-tick success pattern, then
the number of ticks before the first signal is

Ty = W, +20v, - W) +2=2V, = W, +2 (1.43)

The expected time until a signal is, then, by (1.48) and (1.47),

o]
E(T,)=2B(V,) ~ E(W) +2 = 26V = 3, BOW, [V =0PVi=v)+2
v=0
=2E(V)) — ?9 VPV, =) +2
v=0

_2_“_'_52(1_@_)”:2_:@.
== T s+ (1.49)

At py = 0, (1.49) reduces to (1.43).

The zero-tick success patterns increase the possible asset values at a
signal. In (1.40) and (1.41), the only possible values for the price change
increment Z, of (1.9) are {~2,2}. Here, the possible values of Z, are
{=2,~1,1,2}, and so, by the Markov property at the times Jj—2, and
defining P}." := P(T, = j)/S* for j > 2, we have the probabilities

I)(STl =s+2)= Z P(Sl', =s5+2, '[‘1+ = j)

=2

(]

j=2

:pl ZP(S]—Z =75, Tl >j_2) =I)% Z[)j[
=) (1.50)
P(Sy =s5+1)=pp, Z P] P(Sy, =s=D=papy Z P}"

Jj=2 j=2

Py =5 =2 =02, P,

j=2
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which all sum to 1, by the fact that 37, P! = si The equations in (1.50)
also yield the conditional probabilities A

, L »°
L
Pyt PPy
)
P(S; =s+ 1T, =TF)= L
Py (151)
P .
PGSy =s= 11T, =T7) = =0
P+ P_py
b P
P(Sy =s5=2]T,=T)= 50—,
Pyt poipg

An illustration of possible paths leading to a “+ signal can be found in
Figure 1.9.
Retaining the definitions of p* and p~ from (1.20), we get

2
S W L (1.52)

P S o

which allows us to calculate the expected number of signals on a subperiod.
By (1.52) and (1.36),

2 2
't pT PiPotpy PPyt pe ;
e L (153
T PPyt P2, PPy + Dy

Sg=6+2

3 f
ug =2,d3 =0

FIGURE 1.9 The 12 possible LSRW paths for TT = 6.
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which reduces, if py = 0, to (1.44). Also, if the walk is symmetric, that is,
py = p_y, then E(Y}) =2.

Next, we find B and B™, the expected size of the incremental changes
Z,, conditioned on the type of subperiod. Generalizing ( 1.40) and (1.41)
(where p, = 0), we have by (1.51)

Bt =2P(Sy —s=2|T, = TH+PSy —s=1|T, = 5
2
= ] -+ —-L—;,
PPy Py (1.54)
B~ ==2P(S;, —s= 2|1, =T7)=P(Sy, —s=-1|T, =17)
2

P_

p-iPo+ P2, (1.55)

=—1-

Finally, the expected gain E(G,) at the end of a subperiod can be found by
combining (1.37) with (1.52), (1.54), and (1.55), generalizing the p, = 0
case (1.42).

1.5 CUSUM strategy Monte Carlo

Here we provide Monte Carlo simulations of the collection of random
walks on ticks given in the previous section to numerically analyze the
behavior of our strategy against such walks as asset prices.

The two classes of random walks for our simulations are special sub-
classes of (1.45): they are the lazy symmetric simple random walk

~Py

+1 with probability p, = =
X;=40 with probability p, € {0,0.05,0.1,..,035}  (1.56)

—1 with probability p_, = -[—?l

and the lazy asymmetric simple random walk with upward drift

+1 with probability p; = 0.5 — ’—;ﬂ +0.05/,j € {0, 1,...,0}
X; =40 with probability p, € {0,0.1,0.2,0.3,0.4} (1.57)
—1 with probability p_, = 1 = p; — p,,
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where j allows p_; > 0. Each class of walks was run for 200 simulated
trading days, with N = 5000 ticks for 1 day’s trading, and starting price
s = 10,000 ticks each day (to guarantee that | day’s trading does not
bottom out the asset).

Define the idle time of a trading strategy during a day as the (random)
set of tick times between subperiods, that is, when our algorithm declares
that our portfolio be empty. If the day consists of N ticks, then the idle time
for the day is defined as

idle time = {n € {1,2,..,N}: A, =0}.

Jidle time|

The % idle time in a day is simply . If there are R subperiods

in a day, this is

R-1

lidle timel = Y (T = Tar) + (N = Ty,
=0

where T, = N if the final subperiod’s end is induced by the end-of-day
settling the algorithm requires. We can estimate the average number of

subperiods per day by m)[T[iY)Tﬁ and so, since there is the length of one

signal between each subperiod, we can naively estimate the average amount
of idle time in a day as the average number of subperiods per day multiplied
s i N
— . E(T)) = .
YV EEY)+1] (1)) E(Y)+1 Then,
the % idle time in a day is naively estimated by this value divided by the

by the average time to a signal, that is

number of ticks per day, or, simply, ﬁ

Tables containing the results of simulations can be found in the
Appendix, Section 1.7. Table 1.A.1 contains experimental averages of
the following values for the lazy symmetric random walks represented by
(1.56):

m average gain per subperiod (1.37), which can be seen to be close to
E(G,) = 0 in all cases due to symmetry,

m average subperiod length, which approximates (1.49) and (1.53)’s
E(T)E(Y,): forexample, py = 0.1 has 7.670 ~ <§(}2);;2>]_ﬁ) (2) =
3.83(2) = 7.67,

® average number of signals per subperiod, which approximates
(1.53y’s IX(Y,) + 1: for example, py = 0.1 has 2998 ~ 2 + | = 3;
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B average number of subperiods per day, which approximates R above
(which is itself approximated above by 50 A ); for p, = 0.1,

[E(Y)+1]
this is 435.185 ~ 220 ~ 434.21;
3.83(3)
|

g and the average % idle time; for p, = 0.1, thisis 33.2% ~ F‘()/l)+l = .

The remaining tables contain similar experimental data for various
lazy simple random walks from Section 1.4.3. Results of simulations using
frequencies derived from the real data from the S-year and 30-year bonds
are shown in Tables 1.6, 1.7, and 1.8.

Table 1.A.2 contains detail on the subperiods of these walks:

@ the average number of subperiods with a specific number of signals;
for example, p, = 0.1, subperiod length n =4 has 27.31, which,
when divided by the average total number of subperiods 435.185
from Table 1.A.1, gives —2m ~ 0.06275 ~ P(Y, = 4) = 0.0625

435.185
from (1.35) using (1.52);

and the average gain on such a subperiod of length n = 4, which is
3.64 % E(G, | Y, = 4) = 3.478 from (1.34) using (1.52), (1.54), and
(1.55).

Tables 1.A.3 and 1.A.4 contain the same experimental values as Tables
I.A.1 and 1.A.2, this time from the simple random walk of Section 1.4.2.
For example, in Table 1.A.3, examining p; = 0.65, we have

® average gain per subperiod 16.378 =~ E(G|) = 16.481 from (1.42);
m average subperiod length 13.749 ~ E(Y,) - E(T}) = 3.7389 -
3.6697 = 13.7208 from (1.44) and (1.43);

B average number of signals per subperiod 4.746 = E(Y)) + |
4.7389 from (1.44);

i

i N
o av y . ] X ' , o N _
ersz:;ze number  of  subperiods  288.120 T
0 = .
3.6697(4.7389) 287.516; and
v average % idle time 20.8% ~ —— = —— = 21.10%.

E(Yy+] — 47389

Note that, for the simple random walk without a “lazy” probability py,,
the average amount of idle time per simulation (the percentage of ticks
between subperiods) drops as the walk becomes more asymmetric, as the
expected amount of time to get a signal (1.43) (and so be in a subperiod)
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drops. In Table 1.A.4, the first row of each block approximates (1.35)
multiplied by the average number of subperiods from Table 1.A.3 for that
p = py, and the second row approximates (1.34), which is n? — 3n for n
same-sign signals.

1.6 The effect of the threshold parameter

In this section, we discuss the effect of varying the threshold parameter /1
on the proposed trading strategy. We first examine this effect on the real
data in Section 1.3.3. In particular, Figure 1.10 summarizes the effect of
varying thresholds on the gain in all 5 US Treasury bonds of Section 1.3.3.
In this figure, it is shown that varying the threshold does not change the
sign of the gain. In fact, varying the threshold in the 5-year note leaves
the daily gain alimost unchanged, while in the 30-year bonds, although a
more random variation is observed, no apparent pattern of an increasing
or decreasing effect on the gain is observed. This demonstrates a level of
robustness of the proposed strategy’s gain as a function of the threshold.
A closer examination shows that the number of signals per subperiod is
almost constant, regardless of the threshold size, as shown in the column
“average # of signals per subperiod” in Tables 1.1-1.5. Yet, the number
of subperiods per trading day decreases as the threshold increases. This
is shown in Figure 1.11, where we note that the number of signals per
trading day decreases at the rate of the square root of the threshold. The
decrease in the number of subperiods on a given trading day as a result
of an increase in the threshold is to be expected since the quantity that
varies when the threshold varies is the number of ticks, or equivalently,
the amount of time as measured by ticks, required before the completion
of a given subperiod. This is true because a smaller threshold gives rise
to a more sensitive CUSUM stopping time. In fact, the expected time to a
signal (CUSUM alarm) increases as the threshold increases in the order of
the square root of the threshold, that is,

E[T,(h)) ~ E[T,(D]Vh. (1.58)

To justity (1.58), note that, on a trend, one of the CUSUM statistics from
(1.24) increases quadratically, regardless of the threshold /. For example,



= S

28 CHAPTER | Trends and Trades

Gains vs. thresholds
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FIGURE 1.10 Total gain versus thresholds for 5-year and 30-year notes. Top
graph: Small thresholds that vary as follows: 0.5*tick, tick, 2*tick, 3*tick, etc.
(up to 29*tick). Bottom graph: Large thresholds that vary as follows: 50*tick,
2#50%tick, 3#50*tick, etc. (up to 20*50*tick).

on an upward trend, 1t = O(n?), and so the amount of time 1 it takes to
break the threshold, that is, the minimum  to achieve u¥ > h, is found by
observing O(n®) ~ h = n = 0(\/;;). The coefficient can then be found by
checking the baseline threshold /1 = 1. We also offer empirical evidence
for this from bond data and Monte Carlo simulations.



LSO~ 60T LY CI8¢ FLOLO6Y 9000~ 9L L¢ 0s<

LOT O~ L8'6L reL'e 9895t 010°0~ oL 6¢ 00¢
S1L0- 0c6'se 176°C 1T6°LYC 6100~ 11 8t 0¢<1
LLS O~ 0189¢ LL6'C 0T StT £10°0- el t 001
650~ CSL 9t FI8C [LT+S] 00— L61 0L 0s
600 et iy 6CL9L 10070 3t S| 01
070 8L9°0¢ o1t 116'FL <000 00s 8¢€1 6
€00 clOce Fe0'e LET'SY 6000 0F< 8L 8
98¢0 9€e°0¢ L0t 885°¢9 10070 SLS L8] L
LITO £66°6C 160’ €L9°09 1000 009 Lol 9
68¢°0 a9¢ LT sl €68'8¢ <000 <99 0lc S
Lo +08°8C L0t ot 0¢ 100°0 trL It t
6LC°0 Lr9°6C 801°¢ 60T et 100°0 198 8LC €
LE90 £9¢6¢ cli'e Cee'9t <000 0£01 %3 C
FLO] 8sC'IE 980°¢ 881°8¢ 000 6¢¢ it I
£8¢°0 06<ce 300°¢ 0re'ee 100°0 8911 88t €0
uies aui ofp1 pouadqgns 1ad ISu9] pouadqgns sad speusIs spouadgns ployso1y ],
[®10], Jo S[RUSIS JO # aTeI0AY pouadgns o5eroay uIes aSelaay # #

“Jy3Y AJene s |
UWM|od Uf i PIOYSAIY} YITH “FL('LT = A/ STSYIH JO J2qUUINU ) *STISLO0'0 = JY STIZIS 311, *910U [ [0T/20/80 18d4-S 1L T7gVL



6Lt +06°6¢ LS tlL6cc Co Lt Tl 0¢¢
orle LOT1T 9t8't LLOBLE <tC0 0¢ el 00¢
99C'1 9L0°6C 8Lt SLL O8I 0L00 6¢ 81 0¢1
CLE'] F1l'Le 19Tt 16g°¢tl 0900 €L €< 001
Le6’'1 919°LC 8Lt 9L9°L6 LSOO Sl e 0s
0gsi— Fe8ce e6’C £LE78C S16'0— 0t £01 0l
9et"1— wotse we’c ILE'8C 100~ 90¢ 10l 6
01— 90s°¢cE 6T6C 931°9¢ 600°0— lee ell 8
FOT0 19C°¢E LT6'C T68'1¢C <000 09¢ eCl L
90 citee £€6°C S0 o €000 SLE Lcl 9
81C0 €8Tt $+6°C [59°0¢ 100°0 oty ot <
8C0 Oclee L68C e9Ll 000 0¢ L1 t
110 LStEe €er6e’c 106°61 2000 €9¢ 61 €
(45 11rce £€C6'C 60c'el €000— 189 €€l C
I61'¢— 98LTE 616°C 1£€6'8 LO00— 886 See I
€98'1— 908°ce LE8T €059 100°0— Feel L9} 0
ured awin o[pt pouadqos 1ad yi5ug] pouadqns 1od s[eus1s sporradqns pIoysaIy ],
20], Jo % S[RUSIS JO # O5RIIAY potradqns a5vI0AY ures ofeloay # #

Y ATegOE SI
[ QUIN[od Uy 7 PIOYSAIY YL *§8SH = A ST YOI JO JOqUINU oY} “STYSTO"0 = JU STOZIS YL, 030U [10T/67/L0 avaf-gf gL 318VL



16t°C CLOTY SL8C OsLotl 6110 9f 91 0s¢

tOL't 608°6¢ 05Tt cleerl r6T 0 s 91 00¢
<Ll L9t°9¢ 91'e 00& 11 £90°0 LS 31 0€l
062°L [8C°LC 12 S tee Cll e 0L Ic 001
SLE] 9¢8’IC PoeE 8I89L <ro0 111 123 0s
08¢C’¢ £CC6C Sty 8SEeCy L0 1£C 1L 01
¥R B3 c9'6¢ re'e 6£0°0t 15070 FeC 9L 6
et SHe8c 9CCy 00570t L£0°0 89¢ 9L 8
Lett ¢s0'8¢C o5’ SI18'8¢ £s0°0 16C 18 L
€e9'¢ 6160t ¢ 6LS"el 8:0°0 e €6 9
959t 9IL6C 9&t'e 9¢l1CT SH0°0 9¢¢ 10]| <
0sL+ 91L6¢ Lite 9861 100 tor Sl 3
orr¢ §C6'sT 09¢'e 699°L1 8500 LEY 9t1 £
c6L0— £69°te €86°C 1011 <000~ (B3 €61 C
6t8’] 2V ES £C0'e 1£€°8 L00°0 oL T !
00r't— LeLce F68°C $60°9 £00°0—~ 9¢01 8¢c €0
ues aum) ofpt pouoadgns 1ad Isud] pouadqns 1ad S[eusis spouadqgns ploysaiyy.
e10], Jo 9, S[BUSIS JO # d5uIoAy pouodqns a5eIoay UIes aseIaAy # #

VY A[[EMIE Si
[ UWINEOD Ul 3f PIOYSIY) YOBF “FTE = A/ ST SYON JO 13qUInU 31} *STYSTO'0 = J¥ SI 9ZIS 3L, "puoq [10Z/10/80 18d5-0f €1 37gVL



6171 St10e 9L1't 90L'SLI1 <LO0 135 Ll 0s¢
1€6°C LOV'IC HTe CHo8°6L1 €10 19 61 00C
916¢ 9€1°6C SCTI'E SLE8TH <010 SL < 0¢1
o1rs 98°6¢ €0l'e LOT' €01 9L10 06 6C 001
eee’s cer6c SoL’e £9L°08 310 6¢ 8¢ 0s
L96°1 8T9°CE 8te'e 136°Ct <00 86¢ 63 01
609°C LS8'8C [AY 6907t 8200 1T¢ £6 6
628t 991t tor'e LLE'ST 9100 Fer 101 8
8917t £L6°0t 11$7°¢ +08°9¢ 1€0°0 8y 48! L
1€€°E 061'8T £LS°E 16£78C 0’0 £6t 011 9
981t LIE6C ¥Tee L6ETT €00 rt 9Cl S
FOr'C +86°6C 98¢ 968°0¢ 910°0 60¢ 9t1 t
+9C¢ 161°0t €oT¢ 1191 100 109 €81 €
Ie'e Ireee 6CC¢ 36T ¢l 11070 0L 3IC <
8889 9660t 801°¢ L6176 00 86 91¢ I
106°¢ AV AAS c00°€ 2089 6000 16T1 3y S0
ures awn 9fp1 pouadgns tod yISu9| pouadgns 1ad S[RUSIS spotradqns ploysay,
[e10], Jjo % S|RUSIS JO # 95BI0AY pouadqus 95812AY ures o5SeIoAY # #

Wy Lemde sy

[ UWN[0> Ul # PIOYSAIY) YITF “GHEF = A SI YOI JO JAqUINU U} “STISTO"0 = FY 51 9Z1S MILL "PUOq TT0T/TO/80 1L4-0€ 'L TGV



t90's LLrve 00t 009161 €S0 89 0T 0s¢
13 PLETT 9Lt FLS 681 191°0 £L 1T 00¢
100°¢ LLTHC 8¢S LLOOST 610 6 vt |
60971 LS1°0t €0C'e <8CTO 100 ccl or 001
€561 L6 0t 30¢°¢ 0189 8:0°0 Ll s 0¢
L81's S0t 09C’t LOE8C 1+0°0 383 iai 01
£SOt 60t 69t (9¢°9C L£00 8Lt te 0
(it r16°0¢ 8L clysc 0£0°0 Let 6tl 8
1es 99°0¢ 691°¢ | R R £e(’0 LOS 091 L
Sce'e 8CrCe S o I +09°0T 0c00 ces 691 9
018°¢ 8L0°CE 00C’t 6l 1¢0°0 9LE 081 £
Tt Lelce 0’ C99°L1 1¢00 9 861 t
€9t 0L9ce 08¢ 0L9%1 0700 ItL ££C €
LT8'L c6CTCE 19"t 1t97¢CI1 Sc00 000 9L¢ [
809 €9 €80¢ 691°8 100 [REN! scr 1
9<€’¢ 8 e 6F0'c w9 0100 tL91 6Fs €0
ues awn 91p1 pouadgns rod I5us] pouadgns 1od S[eUSIS spouadqns pioysaiy
1®10], 10 2 S[RUSIS JO # A5BIAAY pouradqgns aSeloay uies aSeloay B #

vy Ajenyde sy
I UuInjos uf i ploysaty) yoey] "geIE = N St SYOY JO JDGUINU 31} *STISLO°) = J ST 21 )OL], *3j0U [10T/£0/80 1834-0¢ S’} FIQVL



34

CHAPTER 1

Trends and Trades

Num. of subpericds vs. thresheld

€00 ——r—— ———
- 5-year GB/02/2011
] * ® 30-yoar 07/23/2011
4 *-% 30-yaar 02012011
500 {+ * 3-yoar 081022200
. Lo o 30-year 08/03/2011
3
400 | %

Subperieds
w
3
o

200 oy e,
L B
R S
.- .
100 SRR S AR SR SO
- - -
ARSI T
e e
0
0 5 10 15 20 25 30
Threshold
Num. of subperiods vs. thrashold
70 —
4 v-e S.yaar OAOZZOTT |
Y »- 30-yaar07/29/2011
\ a—s 30-year C8/01/201)
€0 . » » 30-year OR/02/201Y
! |o o 20-yearosioyzon
4
« 4
£0
1S
B 40 .
2 . v
@
é,l H
@ 0 M ..
. .
. » - 2
- - T.
20 WU, -
-— .3 . - 4
. . .- T AR e
10 Loy e s (OSSN . -
B I e RIS S T
JT R S
0
0 5 10 15 20
Threshold

FIGURE 1.11 Number of subperiods versus thresholds for 5-year and 30-
year notes. Top graph: Small thresholds that vary as follows: 0.5%tick, tick,
2*tick, 3*tick, etc. (up to 29%tick). Bottom graph: Large thresholds that vary
as follows 50*tick, 2#50*tick, 3#50*tick, etc. (up to 20*50%*tick).

The fifth columns of Tables 1.1-1.5 represent the average subperiod
length E[T,,,(h)]; the sixth columns represent the average # of signals

per subperiod E[Y,] + 1. Therefore, the expected time to a signal can be
found as

E[Ta(l)(,h)]

1

(1.59)
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38 CHAPTER 1 Trends and Trades

To see the square-root effect, let us examine the following rows:

n In rows 2 and 5 of Table 1.2, we can calculate E[T,(1)] = 949

4.582 and E[T|(4)] = 1178—6(;77 = 9.295, respectively. We now notice

that E[T,(4)] ~ E[Tl(])]\/z.
g In row 4 of Table 1.2, we can calculate E[7,(3)] = LA _ 8184

943
and E[T,(3)] ~ E[T,(D]V/3.

B In rows 2 and 8§ of Table 1.3, we can calculate E[T,(1)] = % =
4.217 and E[T,(7)] = 778 %)135 = [ 1.113, respectively. This leads to
ELT,(D) ~ BIT, ()1,

We have also generated simulated data for each of the bonds from
which once again we can easily decipher the same square-root effect. To
be more specific, we have fitted a lazy random walk model to the 30-
year bond series data for 07/29/2011 and 08/02/2011 with the appropriate
parameters as designated in the caption of Table 1.7. A simple goodness-of-
fit test demonstrates the validity of the model selected. The same process
is followed in the remaining 30-year bond data. The results of the sim-
ulations are summarized in Tables 1.7 and 1.8, respectively. We again
demonstrate the square-root effect once again for the same thresholds used
in the observed data:

= In rows 1, 4, and 3 of Table 1.7, we can calculate E[7, (1)) = 222 =

3.749, E[T\(4)] = 222 = 8.12and E[T(3)] = 222 = 6.857. Once

again we observe the approximations E[T(4)] = E[T(l)]\/Z and
E[T,(3)] » E[T,(1)]y/3, respectively.
o In rows | and 7 of Table 1.8, we can calculate E[T(1)] = (’f;;; =

3.422 and E[T(7)] = 9;;46 9.847, from which we can extract the

approximation E[T,(7)] ~ E[T,(1)]V/7.

The square-root effect suggests that increasing the threshold reduces
the number of complete subperiods R on any given trading day, and thus
the number of transactions completed therein. Thus, although varying the
threshold does not have a systematic effect on the gain in the absence of
transaction costs, increasing the threshold would decrease the number of
transactions but increase the “riskiness” of the trading strategy. A good
measure of performance of the strategy over the course of an entire day
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of trading is the rotal gain }:ftl G, which, under the zero transaction cost
model with IID G, has expected value of E(R)E(G,) by Wald’s equation.
Examining this product as a function of /& under different probabilistic
models of the asset price is of interest, especially in terms of maximizing
the day’s total gain based on the value of h. However, in the presence
of transaction costs, Wald’s equation fails and analytical derivations are
extremely challenging. Besides, transaction costs often vary from firm to
firm and thus the appropriate choice of threshold will depend not only on
the selection of a measure of “riskiness™ but also on the transaction costs
related to the specific product or firm.

1.7 Conclusions and future work

In Figures 1.2, 1.3, 1.4, 1.5, and 1.6 of Section 1.3.3, it is shown that the
proposed CUSUM trading strategy performs well in subperiods of many
signals of one sign before a signal of the opposite sign occurs. This is also
evident in Tables 1.3, 1.5, 1.7, 1.A.1, and 1.A.3 related to the results of
the simulation in the random walk model of Section 1.4. Such subperiods
are characterized by consistent upward or downward trends in prices. On
the contrary, the proposed strategy is at a loss in the case of few signals
of one sign followed by a signal of the opposite sign. Such subperiods
are characterized by stability in prices. This observation suggests that the
CUSUM trading strategy can be further improved by an online detection of
“regimes of stability” (as contrasted to “regimes of trends”). This suggests
the construction of new online algorithm possibly inspired by computer
vision (see, for instance, Hadjiliadis and Stamos [19] or Stamos et al. (30)).

Another statistic that is indicative of the contrast between times of
stability versus times of instability is known as the speed of reaction of
the CUSUM, which measures the time between the last reset to O of the
CUSUM statistic process and the tine of the CUSUM alarm (see, for
instance, [31]). We intend to examine both of these directions of research
in order to improve the performance of the proposed algorithm by limiting
trading in times of stability.

A parameter that should be investigated in depth is the transaction cost
¢. The form of the gain over a subperiod given in (1.11) can be written as

¥, ¥
Gp= (=" ijjw/,u +c ijij(l—l) =2Y,S5; ] (1.60)
j=1 j=1
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This second term should be analyzed as a fixed percentage, and on a sliding
scale (considering, e.g., high-volume rebates). In addition, transaction costs
should be investigated via Monte Carlo simulation, as it requires knowledge
of the liquidation price of the asset for that subperiod.

A parameter closely related to the transaction cost is the threshold
parameter i used in the CUSUM timing. A smaller threshold implies more
frequent transactions but decreases the “riskiness” of the strategy on any
given trading day. The optimal choice of the threshold should thus be
based on the trade-off between an appropriately chosen measure of “risk”
of the proposed strategy and the transaction costs in the market where it is
applied.

Moreover, it should be noted that the random walk examples included
here are not intended as actual asset price models (we do not intend to
commit a Bachelierian fallacy); these models are merely used to illustrate
the strategy and allow for basic calculations. In future work, it would be of
interest to examine the best fit random walk model to actual high-frequency
asset data (taking into account such real-world considerations as the bid-
ask spread). Furthermore, open problems on this topic include extending
analysis of this strategy to other models of asset price motion—primarily,
building a binomial model (of which our random walks are the simplest
case) and limiting to a continuous geometric Brownian motion. Note that
our two sets of random walks investigate different types of “time”: the
po = 0 case investigates “tick time,” where the clock moves only when
the price moves, and the lazy walk, that is, p, > 0, considers clock time
(since there may be samples where the price does not move). This simple
discrepancy induces extra possible paths into the CUSUM timing process.
The general binomial model, which may move a price multiple ticks per
sample, and still retain the probability of standing still, is certainly, then,
of interest.

Finally, we wish to examine the CUSUM strategy with niy, and m‘;

set to wait for multiple ticks instead of one (e.g., my =S8 + f’—:—’ for some
b>1). }

Appendix: Tables

In this section are the tables described in Section 1.5.
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