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Abstract In this paper, we build two, low complexity and robust, error-
detection algorithms that adjust for sensor faults and inaccuracies in real
time. The algorithms can detect consecutive and abrupt sensor slips, and
provide a paradigm for real-time corrections. In addition to reliability, the
algorithms do not require prior data knowledge, nor do they rely on any
assumptions about the distribution of the data. The runtime is independent
of the input size, which is ideal for large volumes of data, and allows for
implementation at the sensor level.

1 Introduction

A major obstacle to progress in robotics is a machines limited ability to inter-
act with the environment. Fortunately, the cost of laser sensors has decreased,
making them an attractive choice as detection tools. Laser sensors are low-
cost devices that are readily available and simple to operate. However, laser
sensors can suffer from jitter and are not very reliable, especially when they
encounter reflective surfaces. The trade-off for their convenience is the rudi-
mentary quality of the data received and thus, the motivation for research
on the topic of increasing sensor accuracy.

Prior research on sensor accuracy has been in either engineering or data
processing. Engineering papers focus on the physical aspects of sensor con-
struction and data acquisition, with the goal to obtain better data through

G. Gatto
Department of Mathematics and Statistics, Hunter College, CUNY, USA, e-mail:

ggatto2@gmail.com

O. Hadjiliadis
Department of Mathematics and Statistics, Hunter College, CUNY, USA e-mail:

olympia.hadjiliadis@gmail.com

1



2 G. Gatto, O. Hadjiliadis

hardware improvements (see, for instance, Morita et al.[10] and Shirafuji et
al.[14]). This paper focuses on data processing. Given existing hardware, we
construct two algorithms that correct sensor slips in real time, and there-
fore refine the quality of the data gathered in an online fashion. While other
papers also focus on data-processing (see, for instance, James et al.[9] and
Veiga et al.[16]), our algorithms do not require prior offline training of a
classifier before they can be used in real time. That is, our algorithms are
non-anticipative and do not rely on any distributional assumptions or prior
training.

In particular, in this paper we construct low complexity error-detection
algorithms to make data obtained from a two-dimensional laser sensor more
accurate. Our improvement relies on the ability to detect in real time both
persistent and instantaneous sensor slips, without the need of prior data
knowledge or the assumption of a specific distribution. The first algorithm
that we construct is a consecutive changes in mean algorithm and the second
is a burst detection algorithm. Both algorithms are based on literature from
the area of quickest detection which is concerned with detecting changes in
the distribution of data received in real time (see Basseville and Nikiforov[1]
and Poor and Hadjiliadis[12]). The consecutive changes in mean algorithm is
based on Page’s [11] CUSUM algorithm applied in repetition as in Carlisle et
al.[3]. The second burst-detection algorithm is based on modeling the data
using Hidden Markov Models (HMM) (see Ghahramani[7] and Rabiner and
Juang[13]) and uses a CUSUM-like algorithm to detect a change from one
HMM to another (see Chen and Willett[4] and Hadjiliadis and Stamos[8]).

In section 2 we discuss the data gathered for this research, which contains
jitters and spikes; two particularly common errors encountered in laser sensor
data. In section 3 we describe the two algorithms, and in section 4 we showcase
our results and real-world performance.

2 Data Description

A SICK TiM571 scanning range finder, manufactured by Fetch, was mounted
on a robot, and provided the laser sensor data. It is a two-dimensional sensor
that measures distance from its origin using the time it takes for a laser
beam to reflect back. The location of the sensor defines the origin of the axis
of reference and an x-y plane is defined by the sensor. The laser has a range
of 25 meters and a 220 degrees field of view. Its angular resolution is 1/3 of a
degree with a 15Hz update rate. This means that one scan contains 660 points
that span 220 degrees, and 15 scans are executed each second. In our data,
one time step corresponds to one full scan. Each of the 660 points, defined by
their (x, y) coordinates, is obtained by firing a laser beam in a straight line
from the sensor until the beam collides with an object that reflects it back
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to the sensor. The delay between the time the beam is sent and received is
converted to distance in meters.

In the raw data, each time step represents one full scan. The 660 (x, y)
pairs of coordinates represent distance in meters and are the result of one full
scan to which the Berlotto [2] clustering algorithm is applied. This algorithm
is divided into three sub-steps: data pre-processing, edge detection, and leg
detection. In the data pre-processing sub-step, a local minimization opera-
tor is applied to reduce some of the noise from the data, such as noise from
sloped surfaces, and a local maximization operator is applied to remove thin
objects, such as table legs. Once the data has been preprocessed thusly, a
vertical edge-detection filter is applied to obtain a sequence of vertical edges.
From this sequence, the Bellotto-Hu clustering algorithm then categorizes
groups of vertical edges in one of three patterns: LA (Legs Apart), FS (For-
ward Straddle), or SL (Single Leg / Legs Together). Each labelled grouping
of vertical edges forms a cluster. Each cluster is then characterized by its
centroid. In our case, the application of the Belotto-Hu algorithm results in
the reduction of the 660 (x, y) points of the scan into at most 7 (x, y) cluster
centroids. Each such centroid is given an index from {0, 1, . . . , 6}.

One issue we experienced with the Bellotta-Hu clustering algorithm is its
inability to reliably order the clusters it detects across scans. To remedy this
defect, we implemented our own reordering algorithm (see table 1 for an
example of the correction of cluster 0 at time-step 205) that assigns each
cluster centroid at time step n the same index of its nearest neighbor at time
n − 1, using the Pythagorean distance from the robot-mounted laser as the
measure. This results in time step continuity of cluster centroids across scans.
Our data is then the time series (xn, yn) for n = 1, 2, . . . , 739, corresponding
to the centroids of cluster 0.

Table 1 Sorting example at time step 205.

#### Before our sorting algorithm After our sorting algorithm

#### cluster 0 (x,y) cluster 1 (x,y) cluster 0 (x,y) cluster 1 (x,y)

time/scan x y x y x y x y

...
...

...
...

...
...

...
...

...

203 0.460388 -0.422849 2.455110 -0.352946 0.460388 -0.422849 2.455110 -0.352946

204 0.460214 -0.422685 2.430700 -0.342202 0.460214 -0.422685 2.430700 -0.342202

205 2.599970 -0.433634 0.460402 -0.422850 0.460402 -0.422850 2.599970 -0.433634

206 0.460663 -0.423155 2.414260 -0.332548 0.460663 -0.423155 2.414260 -0.332548

207 0.460762 -0.423176 2.402750 -0.345458 0.460762 -0.423176 2.402750 -0.345458

...
...

...
...

...
...

...
...

...

Once the time series for cluster 0 was determined, we converted our data
to polar coordinates:



4 G. Gatto, O. Hadjiliadis

(xn, yn)n=1,2,3,...,739 → (rn, θn)n=1,2,3,...,739,

where

rn =
√
x2n + y2n

θn = arctan(yn/xn)

at each time step.

Fig. 1 Distance from the robot, in meters, for cluster no. 0 at each time step.

Fig. 2 Angle orientation from the robot, for cluster no. 0 at each time step.
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We observe two types of sensor slips. The distance plot of figure 1 shows
an up-and-down jitter pattern and the angle plot of figure 2 contains spikes
that occur over intervals as short as one point. These inputs are known to be
faulty since both the robot and the scene are static. The error shown in the
distance plot pertains to a change in the mean, while the error illustrated in
the angle plot can be described as a localized spike in the variance. Thus, we
need to capture both types of errors to correct for faults in the input. In the
next section we will build non-parametric algorithms to detect sensor slips in
real time without making any assumption on the underlying distribution of
the data.

3 Algorithms

In section 2, we observed that the sensor slips related to the distance dis-
play themselves as consecutive changes in the mean of the distribution of
the data, while the faulty inputs related to the angles display themselves as
localized spikes in the variance or as bursts (see figures 1 and 2). Therefore,
we think of our data as the sequences of random variables {Rn}n=0,1,2,... and
{Θn}n=0,1,2,..., whose realizations are the {rn}n=0,1,2,... and {θn}n=0,1,2,... de-
scribed in section 2, respectively.

First, we devise an algorithm that can detect changes in the mean of the
distribution of {Rn}n=0,1,2,... when it occurs. Secondly, we devise an algo-
rithm to detect the localized variance spikes in {Θn}n=0,1,2,.... To achieve
both goals, we use quickest change detection.

The field of quickest change detection (QCD) aims to identify the times
when the probability distribution of a stochastic process changes. To formal-
ize the quickest change detection problem, consider the sequentially observed
variable {Xn}n=0,1,2,.... We introduce the following hypothesis testing prob-
lem:

H0 : Xn ∼ f0, n = 1, 2, ..., ν − 1

H1 : Xn ∼ f1, n = ν, ν + 1, ...

where f0 is the starting distribution of the data and f1 is the distribution
the data moves to at time ν. The objective is to detect ν by minimizing
the delay between ν, the change point, and the time the change point is
declared. Detection of the change is declared by using a stopping time chosen
to carefully balance the tradeoff between time of detection and the frequency
of false alarms Poor and Hadjiliadis[12]. The stopping time is usually based
on the threshold crossing of an appropriately chosen statistic process.

A popular stopping time to detect a change in distribution is known as the
CUSUM stopping time (see, for instance, Chen and Willett [4] or Page[11]
for the original concept or chapter 2.6 in Siegmund[15]). It is based on the



6 G. Gatto, O. Hadjiliadis

CUSUM statistic process {Lnk}n=1,2,..., which, for each n, is the likelihood
ratio from k to n, k ≤ n, where k is the index at which a change occurs(see
equation (4) in Chen and Willett[4]). The CUSUM stopping time then takes
the form:

N = min{n : max
0≤k≤n

Lnk ≥ h},

where h > 0 represents the threshold parameter. This leads to the construc-
tion of two algorithms based on the CUSUM stopping time, the first focuses
on detecting consecutive changes in the mean and the second focuses on
detecting bursts.

3.1 Algorithm for consecutive changes in mean

Consider the random variables {Rn}n=0,1,2,... whose realizations are the
{rn}n=0,1,2,... described in section 2. Without any assumptions about their
distribution, we focus on detecting a change in their mean. Our hypothesis
test then becomes:

H0 : E0[Rn] = µ0, n = 0, 1, 2, ..., ν − 1

H1 : E1[Rn] = µ1, n = ν, ν + 1, ...

where µ0 is the expected value of {Rn}n=0,1,...,ν−1 under the null hypothesis,
and µ1 is the expected value of {Rn}n=ν,ν+1,... after the change occurs.

In order to detect either case in which µ1 > µ0 or µ1 < µ0, we introduce
the constant k to capture the sensitivity to a change upward or downward,
and construct two CUSUM stopping times to detect each of the changes (see
chapter 16 in Devore[5]).

1. µ1 > µ0.

N+ = min{n : dn ≥ h}, (1)

where

dn = max[0, dn−1 + (rn − (µ0 + k))],with d0 = 0. (2)

The {dn}n=0,1,... constitute the CUSUM statistic process, rn is the real-
ization of the data at time n, µ0 is the starting mean of the data, and k is
the upward change that is allowed before the process is considered out of
control.

2. µ1 < µ0.

N− = min{n : en ≥ h}, (3)
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where

en = max[0, en−1 − (rn − (µ0 − k))], with e0 = 0. (4)

The {en}n=0,1,... is the CUSUM statistic process, rn is the realization of
the data at time n, µ0 is the starting mean of the data, and k is the
downward change that is allowed before the process is considered out of
control.

We notice that dn ≥ 0 and en ≥ 0 for all n = 0, 1, 2, . . .; i. e., both of the
CUSUM statistics processes appearing in equations (2) and (4) are capped
below at 0. We can thus select a positive threshold h in the above equations.
We then compare both processes to the threshold h. A different threshold
could be set for (2) and (4). However, since we have no reason to believe
that a change in the mean of the distribution is more likely to be positive
or negative, we choose to set the same threshold for both CUSUM statistic
processes. The first time dn ≥ h or en ≥ h, an alarm is raised. The threshold
h can be set either with domain knowledge, or as an appropriate multiple of
the deviation k. In our application, we set h to be 5 ∗ k and the mean µ0

is initialized from the sample mean of the first 20 data points. In practice,
the parameter k represents the sensitivity of the algorithm to changes in
the mean, and can thus be set to a percentage of the original mean µ0. In
particular, in our paper it is set to 1% of µ0. After an alarm is raised, both
CUSUM statistic processes in equations (2) and (4) are reset to zero, and the
new mean µ1 is set to

1. µ1 = µ0 + k, if N+ ∧N− = N+ (see (1),(3)) and
2. µ1 = µ0 − k, if N+ ∧N− = N− (see (1),(3))

Note that the algorithm is robust with respect to the choice of threshold.
This is further discussed in section 4 of this paper.
The algorithm is detailed below using pseudocode notation1:

1. Set the values of the following parameters

• µ0: the starting mean of the data.
• k: the deviation allowed from the mean (usually taken to be 1

2 the
allowed deviation from the process mean).

• h: the threshold whose crossing triggers and alarm (usually set as a
multiple of k).

2. Initialize an upper and lower CUSUM statistic.

• Set d0 to 0
• Set e0 to 0
• Set µ to µ0

3. Read in data of rn’s and compute, at every time step n = 1, 2, . . .,

1 For the implementation of the algorithm please refer to Gatto[6].
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• dn = max[0, dn−1 + (rn − (µ+ k))]
• en = max[0, en−1 − (rn − (µ− k))]

4. If at time n, dn ≥ h

• Raise alarm
• Set dn to 0
• Set en to 0
• Set µ to µ+ k

5. If at time n, en ≥ h

• Raise alarm
• Set dn to 0
• Set en to 0
• Set µ to µ− k

6. Repeat step 2 through 5 until data stream ends.

3.2 Algorithm for Burst Detection

In this subsection, we build an algorithm to detect sensor slips as manifested
in the angles data. The sensor slips in the angles data are manifested as
bursts, or spikes, which occur over a minute time interval (see figure 2). Such
slips can be described as localized increases in the variance of the data. To
detect such changes, we therefore must capture changes in that variance that
occur over minute intervals. This makes the typical CUSUM algorithm we
used previously ineffective in this case. As we can see in figure 3, the typical
CUSUM algorithm fails to detect the first and fourth angle spikes and further
falsely detects a spike around time step 475. Even a CUSUM algorithm used
to capture changes in the variance parameter itself, would either be blind to
such changes or be too sensitive to be practical.

Therefore, to facilitate the construction of a CUSUM algorithm which
detects the spikes, we must introduce a model that allows for spikes. This
leads us to the consideration of Hidden Markov models (HMM).

A discrete time finite-state HMM is a probabilistic model of a sequence of
random variables {Xt}{t≥0} whose underlying structure is a Markov chain.
A key advantage of HMMs is the assumption that an observation at time t
originates from a process whose inner working is hidden from the observer
Ghahramani[7]. Therefore, the distribution of the Xt’s for each t = 0.1.2., . . .
depends on the value of a sequence of state variables {st}t=0,1,..., with st ∈
{1, ..., N} which are governed by the N x N transition matrix A . A discrete
HMM can be described by the triple,

λ = (A,B, π), (5)
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Fig. 3 The CUSUM algorithm of section 3.1 fails to detect the first and fourth spikes,

and falsely detects a spike around time step 475.

where A is the state transition matrix of the underlying Markov chain,

A = [aij ] = [P (st+1 = j|st = i)], i, j = 0, ..., N,

B is the observation matrix,

B = [bixt ] = [P (Xt ∈ dxt|st = i)], i = 1, ..., N,

and π is the initial probability distribution of the underlying Markov states,

π = [πi = P (st = i)], i = 0, ..., N.

In our case, we set N = 1. That is, there are two states, 0 and 1. We then use
two HMM models to describe the probabilistic behavior of our sequence of
angle random variables {Θt}{t≥0}; one that does not allow spikes in variance,
and one that does. In other words, one in which state 0 is the only possible
state and one in which both states 0 and 1 are possible. To simplify the
model for Θt’s we first normalize by subtracting the sample mean of the
first few observations (the first 20). We can now represent the “low” and
“high” variance regimes by using two gaussian models in the observation
matrix, one with a “low” and one with a “high” variance parameter. Note
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that the Gaussian assumption in the observation matrix is redundant. All we
need, is a distribution with a finite second moment so that the “low” and
“high” variance regimes can be distinguished (in our case with a low or high
variance). Arbitrarily, we chose state 0 to be the state with low variance and
state 1 to be the state with high variance. Our observation matrix is:

B =

 1√
2πσlow

e
−x

2σ2
low

1√
2πσhigh

e
−x

2σ2
high

 . (6)

The low variance is the baseline variance, obtained by computing the sample
variance of the first few points of data (in our case the first 20 points). An
alternative method is to set the variance by using domain knowledge. The
high variance is set as a multiple of the low variance. We used a multiple of
5 in our case. The algorithm is extremely robust with respect to the multiple
that is used. Although the observation matrix uses the Gaussian kernel, the
data from a normal distribution is not necessary for adequate real-world
performance.

Now, let A0, π0 be the state transition matrix and the initial probability
distribution vector for the HMM that does not allow spikes in the variance,
and A1, π1 be the state transition matrix and the initial probability distri-
bution vector for the HMM that allows spikes in the variance.

A0 =

[
1 0
0 1

]
, π0 =

[
1
0

]
, (7)

A1 =

[
0.9 0.1
0.9 0.1

]
, π1 =

[
0.5
0.5

]
. (8)

Under model λ0 = (A0, B, π0), state 1 is impossible as the initial probability
distribution vector π0 begins in state 0 which is an absorbing state accord-
ing to the state transition matrix A0. On the other hand, under the model
described by λ1 = (A1, B, π1), both state 0 and state 1 are possible and,
although transitions from state 0 to itself are more likely to occur, it remains
possible to transition from state 0 to state 1, which is a “high” variance state.
The choice of values for the transition probabilities in matrix A1 reflects the
possibility to transition from any state to any state with a higher probability
to remain in state 0 when in it, and a higher probability to transition to state
0 when in state 1. Such a choice of transition matrix A1 describes the na-
ture of the possibility of instantaneous bursts, since state 1 is a high-variance
state. Our algorithm is robust with respect to the exact choice of the transi-
tion probabilities in the A1 matrix above. A demonstration of the robustness
of our algorithm to the exact choice of the A1 matrix is seen in section 4.

This gives us the following hypothesis testing:
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H0 : Θt ∼ λ0, t = 1, 2, . . .

H1 : Θt ∼ λ1, t = 1, 2, . . .

Θt’s are the sequence of random variables representing the angles as described
in section 2, λ0 = (A0, B, π0), and λ1 = (A1, B, π1).

Our goal is to determine which model at each point in time is most likely
to describe the data. To that end, we introduce a conditional form of the log
likelihood ratio g(n; k) (refer to equation (24) in Chen and Willett[4])

g(n; k) =

n∑
t=k

log

(
f1(θt|θt−1, . . . , θk)

f0(θt|θt−1, . . . , θk)

)
, (9)

where f0 and f1 are the conditional distributions of the Θt’s under H0 and
H1, respectively, which enables the construction of the CUSUM-like statistic
algorithm of equation (23) in Chen and Willett[4]:

Sn = max{0, Sn−1 + g(n; k)}. (10)

In what follows we will use this paradigm to build an algorithm that detects
bursts in real time.

The joint probability density of the history of the stochastic process and
the state at a certain time is known as the forward variable. It is defined as:

αt(i) = p(θ1, θ2, . . . , θt, st = i|λ), i = 0, 1, . . . , N, t = 0, 1, . . . , (11)

where st is the state occupied at time t, i is the state index, and N is the
total number of states. Due to the Markovian property, the forward variable
can easily be computed since it depends solely on the last state, and not on
the joint probability of all the states visited so far.

In our case the number of states is 2; that is N = 1. According to (25)
in Chen and Willett[4], the likelihood function of an HMM with parameter
triple λ can be written as

f(θ1, θ2, . . . , θt|λ) =

1∑
i=0

αt(i), (12)

where αt(i)’s are the sequence of forward variable that we use to compute
the likelihood of the HMM described by λ in (5).

Furthermore, note that (9) is equivalent to

fl(θt|θt−1, . . . , θ1) = f(θt|θt−1, . . . , θ1, λl) =

∑1
i=0 αt(i)∑1
i=0 αt−1(i)

, l ∈ {0, 1}, (13)

where fl is the conditional distribution of Θ’s described by λl for l = 0, 1
corresponding to H0 and H1 respectively. In other words, the conditional
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form of the log-likelihood ratio g(n; 1) of (9) can be expressed as the ratio
of the sum of forward variables, which can easily be computed as a running
sum.

Due to the limitation of machine precision, computations with increasingly
small values cause numerical underflow. In order to circumvent this issue, we
use the scaled forward variable α′t as defined in equation (27) in Chen and
Willett[4]. That is, α′1(i) = α1(i) and for t > 1:

α′t+1(j) =

[∑1
i=0 α

′
t(i)aij

]
bjθt+1∑1

i=0 α
′
t(i)

, j = 0, 1 (14)

where aij is the state transition probability to state i from state j, and bjθt+1

is the 1st entry in the matrix B of (6) for j = 0 and the 2nd entry of the
matrix B of (6) for j = 1, evaluated at the observation θt+1. Please note
that there are two sets of α′t’s corresponding to each state for each of the
hypothesis H0 and H1, resulting in four arrays of α′t’ s indexed by the time
variable t.
The algorithm is given below in pseudocode notation 2 :

1. Set the values of the follow parameters:

• t to 1
• l0 to 0, where lt denotes the LLR at time t.

2. Initialize the scaled foward variable α′t:

α′t(j) = πjbjθt (15)

for each state j = 0, 1 and for both hypotheses H0 and H1.
3. Update the log-likelihood ration process {lt}t≥0 as follows:

lt = lt−1 + log

(∑1
i=0 α

′
t(i|H1)∑1

i=0 α
′
t(i|H0)

)
(16)

4. If lt > h, declare detection of high variance.
If lt < 0

• lt to 0
• t to t+ 1
• goto 2

5. Else (if 0 < lt < h)

• set t to t+ 1
• Update α′t using (14)
• goto 3

2 For the implementation of the algorithm please refer to Gatto[6].
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Please note that g(t; 1) of (9) is

g(t; 1) = log

(∑N
i=1 α

′
t(i|H1)∑N

i=1 α
′
t(i|H0)

)

of step 3 and the CUSUM-like algorithm is constructed by the sequence of
lt’s above by setting the left-hand threshold to 0 (see Siegmund[15]); that is,
{lt}t≥0 represents the log likelihood ratio process LLR.

4 Results

We applied the consecutive changes in mean CUSUM algorithm of section
3.1 to detect consecutive changes in the mean of the distances of the data.
Figure 4 is the graph of figure 1 presented in section 2 with the changes we
aim to capture highlighted. We ran our algorithm on the data of distances and
compiled the results in figure 5 for different thresholds (h = 2.5k, h = 5k, and
h = 10k). Our algorithm managed to capture the three changes we intended
to capture, and it did so for various values of h, demonstrating robustness
of the consecutive changes in mean CUSUM algorithm with respect to the
threshold (i. e., the threshold does not need to be perfectly tuned). There is
a slight lag in detection when the threshold is increased, which is expected.

Fig. 4 The boundaries of the highlighted sections mark when a change happens.
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Fig. 5 The boundaries of the highlighted sections represent the different levels in mean
detected by our algorithm with thresholds set to h = 2.5k, h = 5k, and h = 10k, respec-

tively.

We ran the burst-detection algorithm to detect instantaneous sensor slips
on the angle component of the data, shown in figure 6. As demonstrated in
the graph, the LLR statistic spikes up whenever there is a sensor slip in the
angles data. Therefore, almost any threshold would be sufficient in detecting a
sensor slip. To test the robustness of the algorithm with respect to the choice
of transition matrix A1 (see (8)), we ran the algorithm with the matrix in
(8) and the following matrices:

A′1 =

[
0.1 0.9
0.1 0.9

]
, A′′1 =

[
0.5 0.5
0.5 0.5

]
.
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Fig. 6 Comparison of LLR values to the plot of angles. The transition matrix is the same
as in (8).

Regardless of which transition matrix was used, our algorithm detected the
spikes at the same locations. Therefore, the burst-detection algorithm is very
robust with respect to the choice of parameters in the models of subsection
3.2.
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