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a b s t r a c t

This paper studies the stochasticmodeling ofmarket drawdown events and the fair valuation of insurance
contracts based on drawdowns. We model the asset drawdown process as the current relative distance
from the historical maximum of the asset value. We first consider a vanilla insurance contract whereby
the protection buyer pays a constant premium over time to insure against a drawdown of a pre-specified
level. This leads to the analysis of the conditional Laplace transform of the drawdown time, which will
serve as the building block for drawdown insurance with early cancellation or drawup contingency. For
the cancellable drawdown insurance, we derive the investor’s optimal cancellation timing in terms of
a two-sided first passage time of the underlying drawdown process. Our model can also be applied to
insure against a drawdown by a defaultable stock. We provide analytic formulas for the fair premium and
illustrate the impact of default risk.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The recent financial crisis has been marked with series of sharp
falls in asset prices triggered by, for example, the S&P downgrade
of US debt, and default speculations of European countries. Many
individual and institutional investors are wary of large market
drawdowns as they not only lead to portfolio losses and liquidity
shocks, but also indicate potential imminent recessions. As is well
known, hedge fund managers are typically compensated based on
the fund’s outperformance over the last record maximum, or the
high-water mark (see Agarwal et al., 2009, Goetzmann et al., 2003,
Grossman and Zhou, 1993, Sornette, 2003, among others). As such,
drawdown events can directly affect the manager’s income. Also,
a major drawdown may also trigger a surge in fund redemption
by investors, and lead to the manger’s job termination. Hence,
fund managers have strong incentive to seek insurance against
drawdowns.

These market phenomena have motivated the application of
drawdowns as path-dependent risk measures, as discussed in
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Magdon-Ismail and Atiya (2004), Pospisil and Vecer (2010), among
others. On the other hand, Vecer (2006, 2007) argues that some
market-traded contracts, such as vanilla and lookback puts, ‘‘have
only limited ability to insure the market drawdowns’’. He studies
through simulation the returns of calls and puts written on the
underlying asset’s maximum drawdown, and discusses dynamic
trading strategies to hedge against a drawdown associated with a
single asset or index. The recent work Carr et al. (2011) provides
non-trivial static strategies usingmarket-traded barrier digital op-
tions to approximately synthesize a European-style digital option
on a drawdown event. These observations suggest that drawdown
protection can be useful for both institutional and individual in-
vestors, and there is an interest in synthesizing drawdown insur-
ance.

In the current paper, we discuss the stochastic modeling of
drawdowns and study the valuation of a number of insurance con-
tracts against drawdown events. More precisely, the drawdown
process is defined as the current relative drop of an asset value
from its historical maximum. In its simplest form, the drawdown
insurance involves a continuous premiumpayment by the investor
(protection buyer) to insure a drawdown of an underlying asset
value to a pre-specified level.

In order to provide the investor with more flexibility in
managing the path-dependent drawdown risk, we incorporate the
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right to terminate the contract early. This early cancellation feature
is similar to the surrender right that arises in many common
insurance products such as equity-indexed annuities (see e.g.
Cheung and Yang, 2005, Moore, 2009, Moore and Young, 2005).
Due to the timing flexibility, the investor may stop the premium
payment if he/she finds that a drawdown is unlikely to occur
(e.g. when the underlying price continues to rise). In our analysis,
we rigorously show that the investor’s optimal cancellation timing
is based on a non-trivial first passage time of the underlying
drawdown process. In other words, the investor’s cancellation
strategy and valuation of the contract will depend not only on
current value of the underlying asset, but also its distance from the
historical maximum. Applying the theory of optimal stopping as
well as analytical properties of drawdown processes, we derive the
optimal cancellation threshold and illustrate it through numerical
examples.

Moreover, we consider a related insurance contract that pro-
tects the investor from a drawdown preceding a drawup. In other
words, the insurance contract expires early if a drawup event oc-
curs prior to a drawdown. From the investor’s perspective, when
a drawup is realized, there is little need to insure against a draw-
down. Therefore, this drawup contingency automatically stops the
premium payment and is an attractive feature that will potentially
reduce the cost of drawdown insurance.

Our model can also readily extended to incorporate the default
risk associated with the underlying asset. To this end, we observe
that a drawdown can be triggered by a continuous pricemovement
as well as a jump-to-default event. Among other results, we
provide the formulas for the fair premium of the drawdown
insurance, and analyze the impact of default risk on the valuation
of drawdown insurance.

In existing literature, drawdowns also arise in a number
of financial applications. Pospisil and Vecer (2010) apply PDE
methods to investigate the sensitivities of portfolio values and
hedging strategies with respect to drawdowns and drawups.
Drawdown processes have also been incorporated into trading
constraints for portfolio optimization (see e.g. Grossman and
Zhou, 1993, Cvitanić and Karatzas, 1995, Chekhlov et al., 2005).
Meilijson (2003) discusses the role of drawdown in the exercise
time for a certain look-back American put option. Several studies
focus on some related concepts of drawdowns, such as maximum
drawdowns (Douady et al., 2000; Magdon-Ismail and Atiya, 2004;
Vecer, 2006, 2007), and speed of market crash (Zhang and
Hadjiliadis, 2012). On the other hand, the statistical modeling
of drawdowns and drawups is also of practical importance, and
we refer to the recent studies Câmara Leal and Mendes (2005),
Johansen (2003), Rebonato and Gaspari (2006), among others.

For our valuation problems, we often work with the joint
law of drawdowns and drawups. To this end, some related
formulas from Hadjiliadis and Vecer (2006), Pospisil et al. (2009),
Zhang and Hadjiliadis (2010), and Zhang (2013) are useful.
Compared to the existing literature and our prior work, the
current paper’s contributions are threefold. First, we derive the
fair premium for insuring a number of drawdown events, with
both finite and infinite maturities, as well as new provisions like
drawup contingency and early termination. In particular, the early
termination option leads to the analysis of a new optimal stopping
problem (see Section 3). We rigorously solve for the optimal
termination strategy, which can be expressed in terms of first
passage time of a drawdown process. Furthermore, we incorporate
the underlying’s default risk – a feature absent in other related
studies on drawdown – into our analysis, and study its impact on
the drawdown insurance premium.

The paper is structured as follows. In Section 2, we describe
a stochastic model for drawdowns and drawups, and formulate
the valuation of a vanilla drawdown insurance. In Sections 3 and
4, we study, respectively, the cancellable drawdown insurance
and drawdown insurance with drawup contingency. As extension,
we discuss the valuation of drawdown insurance on a defaultable
stock in Section 5. Section 6 concludes the paper. We include the
proofs for a number of lemmas in Appendix A.

2. Model for drawdown insurance

We fix a complete filtered probability space (Ω, F , (Ft)t≥0, Q)
satisfying the usual conditions. The risk-neutral pricingmeasure Q
is used for our valuation problems. Under themeasureQ, wemodel
a risky asset S by the geometric Brownian motion

dSt
St

= rdt + σdWt (2.1)

where W is a standard Brownian motion under Q that generates
the filtration (Ft)t≥0.

Let us denote S and S, respectively, to be the processes for
the running maximum and running minimum of S. When writing
the contract, the insurer may use the historical maximum s and
minimum s recorded from a prior reference period. Consequently,
at the time of contract inception, the reference maximum s, the
reference minimum s and the stock price need not coincide. This is
illustrated in Fig. 1.

The running maximum and running minimum processes
associated with S follow,1

St = s ∨


sup
s∈[0,t]

Ss

, St = s ∧


inf

s∈[0,t]
Ss

. (2.2)

We define the stopping times

ϱD(K) = inf{t ≥ 0 : St/St ≥ K} and
ϱU(K) = inf{t ≥ 0 : St/St ≥ K},

(2.3)

respectively as the first times that S attains a relative drawdown of
K units and a relative drawup of K units. Without loss of generality,
we assume that 1 ≤ s/s < K so that ϱD(K) ∧ ϱD(K) > 0, almost
surely.

To facilitate our analysis, we shall work with log-prices.
Therefore, we define Xt = log St so that
Xt = x + µt + σWt , (2.4)

where x = log S0 and µ = r −
σ 2

2 . Denote by X t = log St and
X t = log St to be, respectively, the runningmaximum and running
minimum of the log price process. Then, the relative drawdown
and drawup of S are equivalent to the absolute drawdown and
drawup of the log-price X , namely,

τD(k) = inf{t ≥ 0 : Dt ≥ k} and
τU(k) = inf{t ≥ 0 : Ut ≥ k},

(2.5)

where k = log K (see (2.3)), Dt = X t − Xt and Ut = Xt − X t . Note
that under the current model the stopping times τD(k) = ϱD(K)
and τU(k) = ϱU(K), and they do not depend on x or equivalently
the initial stock price.

2.1. Drawdown insurance and fair premium

We now consider an insurance contract based on a drawdown
event. Specifically, the protection buyer who seeks insurance on a
drawdown event of size kwill pay a constant premium payment p
continuously over time until the drawdown time τD(k). In return,
the protection buyer will receive the insured amount α at time
τD(k). Here, the values p, k and α are pre-specified at the contract
inception. The contract value of this drawdown insurance is

1 Herein, we denote a ∨ b = max(a, b) and a ∧ b = min(a, b).
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Fig. 1. Daily log-price of S&P Index from07/01/2011 to 11/01/2011. For illustration,
July is used as the reference period to record the historical running maximum and
minimum. At the end of the reference period, the running maximum s = 7.21 and
the log-price x = 7.16, so the initial drawdown y = 0.05. We remark that the large
drawdown in August 2011 due to the downgrade of US debt by S&P.

f (y; p) = E

−

 τD(k)

0
e−rtp dt + αe−rτD(k)

| D0 = y


(2.6)

=
p
r

−


α +

p
r


ξ(y), (2.7)

where ξ is the conditional Laplace transform of τD(k) defined by

ξ(y) := E{e−rτD(k)
| D0 = y}, 0 ≤ y ≤ k. (2.8)

This amounts to computing the conditional Laplace transform ξ ,
which admits a closed-form formula as we show next.

Proposition 2.1. The conditional Laplace transform function ξ(·) is
given by

ξ(y) = e
µ

σ2 (y−k) sinh(Ξ r
µ,σ y)

sinh(Ξ r
µ,σ k)

+ e
µ

σ2 y sinh(Ξ r
µ,σ (k − y))

sinh(Ξ r
µ,σ k)

×
e−

µ

σ2 k
Ξ r

µ,σ

Ξ r
µ,σ cosh(Ξ r

µ,σ k) −
µ

σ 2 sinh(Ξ r
µ,σ k)

, 0 ≤ y ≤ k (2.9)

where Ξ r
µ,σ =


2r
σ 2 +

µ2

σ 4 .

Proof. Define the first time that the drawdown process (Dt)t≥0
decreases to a level θ ≥ 0 by

τ−

D (θ) := inf{t ≥ 0 : Dt ≤ θ}. (2.10)

By the strong Markov property of process D at τ−

D (0), we have that
for t ≤ τD(k),

ξ(Dt) = E{e−rτD(k)
| Dt}

= E{e−rτD(k)1
{τD(k)<τ−

D (0)} | Dt}

+ E{e−rτ−

D (0)1
{τD(k)>τ−

D (0)} | Dt}ξ(0)

= e
µ

σ2 (Dt−k) sinh(Ξ r
µ,σDt)

sinh(Ξ r
µ,σ k)

+ e
µ

σ2 Dt sinh(Ξ r
µ,σ (k − Dt))

sinh(Ξ r
µ,σ k)

ξ(0). (2.11)

Therefore, the problem is reduced to finding ξ(0), which is known
(see Lehoczky, 1977):

ξ(0) =
e−

µ

σ2 k
Ξ r

µ,σ

Ξ r
µ,σ cosh(Ξ r

µ,σ k) −
µ

σ 2 sinh(Ξ r
µ,σ k)

.

Substituting this to (2.11) yields (2.9). �
Therefore, the contract value f (y; p) in (2.6) is explicit given
for any premium rate p. The fair premium P∗ is found from the
equation f (y; P∗) = 0, which yields

P∗
=

rαξ(y)
1 − ξ(y)

. (2.12)

Remark 2.2. Our formulation can be adapted to the case when the
drawdown insurance is paid for upfront. Indeed, we can set p = 0
in (2.6), then the price of this contract at time zero is f (y; 0). On the
other hand, if the insurance premium is paid over a pre-specified
period of time T ′, rather than up to the random drawdown time,
then the present value of the premium cash flow p

r (e
−rT ′

− 1) will
replace the first term in the expectation of (2.7). In this case, setting
the contract value zero at inception, the fair premium is given by
P∗(T ′) :=

f (y; 0)r
1−e−rT ′ > 0. In Section 4, we discuss the case where the

holder will stop premium payment if a drawup event occurs prior
to drawdown or maturity.

For both the insurer and protection buyer, it is useful to know
how long the drawdown is expected to occur. This leads us to
compute the expected time to a drawdown of size k ≥ 0, under
the physical measure P. Themeasure P is equivalent toQ, whereby
the drift of S is the annualized growth rate ν, not the risk-free rate
r . Under measure P, the log price is

Xt = x + µ̃t + σW P
t , with µ̃ = ν − σ 2/2,

where W P is a P-Brownian motion.

Proposition 2.3. The expected time to drawdown of size k is given by

EP{τD(k)|D0 = y}

=
y · ρτ (y; k) + (y − k) · e

2µ̃
σ2 (y−k)

ρτ (k − y; k)
µ̃

+ ρτ (y; k) ·
e

2µ̃
σ2 k

−
2µ̃
σ 2 k − 1

2µ̃
σ 2

2 , (2.13)

where ρτ (y; k) := e
µ̃

σ2 y sinh(
µ̃

σ2 (k−y))

sinh(
µ̃

σ2 k)
.

Proof. By the Markov property of the process (Xt)t≥0, we know
that

τD(k) = τx+y−k ∧ τx+y + (τD(k) ◦ θτx+y) · 1{τx+y<τx+y−k}, P-a.s.

where τw = inf{t ≥ 0 : Xt = w}, and θ· is the standard Markov
shift operator. If µ̃ ≠ 0, applying the optional sampling theorem
to uniformly integrable martingale (Mt∧τx+y−k∧τx+y)t≥0 with Mt =

Xt − µ̃t , we obtain that
EP{τx+y−k ∧ τx+y|X0 = x}

=
y · P(τx+y < τx+y−k|X0 = x) + (y − k) · P(τx+y−k < τx+y|X0 = x)

µ̃
.

Moreover, using the fact that P(τx+y < τx+y−k|X0 = x) = ρτ (y; k),

P(τx+y−k < τx+y|X0 = x) = e
2µ̃
σ2 (y−k)

ρτ (k − y; k) and Eq. (11) of
Hadjiliadis and Vecer (2006):

EP{τD(k)|D0 = 0} =
e

2µ̃
σ2 k

−
2µ̃
σ 2 k − 1

2µ̃
σ 2

2 ,

we conclude the proof for µ̃ ≠ 0. The case of µ̃ = 0 is obtained by
taking the limit µ̃ → 0. �
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3. Cancellable drawdown insurance

As is common in insurance and derivatives markets, investors
may demand the option to voluntarily terminate their contracts
early. Typical examples include American options and equity-
indexed annuities with surrender rights. In this section, we
incorporate a cancellable feature into our drawdown insurance,
and investigate the optimal timing to terminate the contract.

With a cancellable drawdown insurance, the protection buyer
can terminate the position by paying a constant fee c anytime prior
to a pre-specified drawdown of size k. For a notional amount of α
with premium rate p, the fair valuation of this contract is found
from the optimal stopping problem:

V (y; p) = sup
0≤τ<∞

E


−

 τD(k)∧τ

0
e−rtp dt − ce−rτ

× 1{τ<τD(k)} + αe−rτD(k)1{τD(k)≤τ } | D0 = y


(3.1)

for y ∈ [0, k). The fair premium P∗ makes the contract value zero
at inception, i.e. V (y; P∗) = 0.

We observe that it is never optimal to cancel and pay the fee c
at τ = τD(k) since the contract expires and pays at τD(k). Hence,
it is sufficient to consider a smaller set of stopping times S :=

{τ ∈ F : 0 < τ < τD(k)}, which consists of F-stopping times
strictly bounded by τD(k). We will show in Section 3.2 that the
set of candidate stopping times are in fact the drawdown stopping
times τ = τ−

D (θ) indexed by their respective thresholds θ ∈ (0, k)
(see (2.10)).

3.1. Contract value decomposition

Next, we show that the cancellable drawdown insurance can
be decomposed into an ordinary drawdown insurance and an
American-style claim on the drawdown insurance. This provides
a key insight for the explicit computation of the contract value as
well as the optimal termination strategy.

Proposition 3.1. The cancellable drawdown insurance value admits
the decomposition:

V (y; p) = −f (y; p) + sup
τ∈S

E

e−rτ (f (Dτ ; p) − c) | D0 = y


, (3.2)

where f (·; ·) is defined in (2.6).

Proof. Let us consider a transformation of V (D0; p). First, by
rearranging of the first integral in (3.1) and using 1{τ≥τD(k)} =

1 − 1{τ<τD(k)}, we obtain Eq. (3.3) given in Box I.
Note that the first term is explicitly given in (2.6) and (2.9), and

it does not depend on τ . Since the second term depends on τ only
through its truncated counterpart τ ∧ τD(k) ≤ τD(k), and that
τ = τD(k) is suboptimal, we can in fact consider maximizing over
the restricted collection of stopping times S = {τ ∈ F : 0 ≤ τ <
τD(k)}. As a result, the second term simplifies to

G(y; p) = sup
τ∈S

E

 τD(k)

τ

e−rtp dt − ce−rτ1{τ<τD(k)}

− αe−rτD(k)1{τ<τD(k)} | D0 = y


.

Then, using the fact that {τ < τD(k), τ < ∞} = {Dτ < k, τ <
∞}, as well as the strong Markov property of X , we can write

G(y; p) = sup
τ∈S

E

e−rτ f̃ (Dτ ; p)1{τ<∞} | D0 = y


,

where

f̃ (y; p) = 1{y<k}E

 τD(k)

0
e−rtp dt

− αe−rτD(k)
− c | Dτ = y


. (3.4)

Hence, we complete the proof by simply noting that f̃ (y; p) =

f (y; p) − c (compare (3.4) and (2.6)). �

Using this decomposition, we can determine the optimal
cancellation strategy from the optimal stopping problem G(y),
which we will solve explicitly in the next subsection.

3.2. Optimal cancellation strategy

In order to determine the optimal cancellation strategy for
V (y; p) in (3.2), it is sufficient to solve the optimal stopping prob-
lem represented by g in (3.3) for a fixed p. To simplify notations,
let us denote by f (·) = f (·; p) and f̃ (·) = f̃ (·; p). Our method of
solution consists of two main steps:

1. We conjecture a candidate class of stopping times defined by
τ := τ−

D (θ) ∧ τD(k) ∈ S, where

τ−

D (θ) = inf{t ≥ 0 : Dt ≤ θ}, 0 < θ < k. (3.5)

This leads us to look for a candidate optimal threshold θ∗
∈

(0, k) using the principle of smooth pasting (see (3.9)).
2. We rigorously verify via a martingale argument that the

cancellation strategy based on the threshold θ∗ is indeed
optimal.

Step 1. From the properties of Laplace function ξ(·) (see
Lemma A.2 below), we know the reward function f̃ (·) := f (·) − c
in (3.2) is a decreasing concave. Therefore, if f̃ (0) ≤ 0, then
the second term of (3.2) is non-positive, and it is optimal for the
protection buyer to never cancel the insurance, i.e., τ = ∞. Hence,
in search of non-trivial optimal exercise strategies, it is sufficient
to study only the case with f̃ (0) > 0, which is equivalent to

p >
r(c + αξ(0))
1 − ξ(0)

≥ 0. (3.6)

For each stopping rule conjectured in (3.5), we compute
explicitly the second term of (3.2) as

g(y; θ) := E

e−r(τ−

D (θ)∧τD(k)) f̃ (Dτ−

D (θ)∧τD(k)) | D0 = y


(3.7)

= E{e−rτ−

D (θ)1
{τ−

D (θ)<τD(k)} f̃ (θ) | D0 = y}

+ E{e−rτD(k)1
{τD(k)≤τ−

D (θ)} f̃ (k) | D0 = y}

=

e
µ

σ2 (y−θ) sinh(Ξ r
µ,σ (k − y))

sinh(Ξ r
µ,σ (k − θ))

f̃ (θ), if y > θ

f̃ (y), if y ≤ θ.

(3.8)

The candidate optimal cancellation threshold θ∗
∈ (0, k) is found

from the smooth pasting condition:

∂

∂y


y=θ

g(y; θ) = f̃ ′(θ). (3.9)

This is equivalent to seeking the root θ∗ of the equation:

F(θ) :=


µ

σ 2
− Ξ r

µ,σ coth(Ξ r
µ,σ (k − θ))


f̃ (θ) − f̃ ′(θ)

= 0, (3.10)
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.3)
V (y; p) = E

−

 τD(k)

0
e−rtp dt + αe−rτD(k)

| D0 = y


+ sup
0≤τ<∞

E
 τD(k)

τD(k)∧τ

e−rtp dt − ce−rτ1{τ<τD(k)} − αe−rτD(k)1{τ<τD(k)} | D0 = y


  
=:G(y; p)

= −f (y; p) + G(y; p) (3

Box I.
where f̃ and f̃ ′ are explicit in view of (2.6) and (2.9). Next, we
show that the root θ∗ exists and is unique (see Appendix A.2 for
the proof).

Lemma 3.2. There exists a unique θ∗
∈ (0, k) satisfying the smooth

pasting condition (3.9).

Step 2. With the candidate optimal threshold θ∗ from (3.9), we
now verify that the candidate value function g(y; θ∗) dominates
the reward function f̃ (y) = f (y) − c. Recall that g(y; θ∗) = f̃ (y)
for y ∈ (0, θ∗).

Lemma 3.3. The value function corresponding to the candidate
optimal threshold θ∗ satisfies

g(y; θ∗) > f̃ (y), ∀y ∈ (θ∗, k).

We provide a proof in A.3. By the definition of g(y; θ∗)
in (3.7), repeated conditioning yields that the stopped process
{e−r(t∧τ−

D (θ∗)∧τD(k))g(Dt∧τ−

D (θ∗)∧τD(k); θ∗)}t≥0is a martingale. For y ∈

[0, θ∗), we have

1
2
σ 2 f̃ ′′(y) − µf̃ ′(y) − r f̃ (y)

= −C


1
2
σ 2ξ ′′(y) − µξ ′(y) − r(ξ(y) − ξ(θ0))


= −Crξ(θ0) < 0,

where C = α +
p
r . As a result, the stopped process {e−r(t∧τD(k))

g(Dt∧τD(k); θ∗)}t≥0 is in fact a super-martingale.
To finalize the proof, we note that for y ∈ (θ∗, k) and any

stopping time τ ∈ S,

g(y; θ∗) ≥ E{e−rτ g(Dτ ; θ∗) | D0 = y}

≥ E{e−rτ f̃ (Dτ ) | D0 = y}. (3.11)

Maximizing over τ , we see that g(y; θ∗) ≥ G(y). On the other
hand, (3.11) becomes an equality when τ = τ−

D (θ∗), which yields
the reverse inequality g(y; θ∗) ≤ G(y). As a result, the stopping
time τ−

D (θ∗) is indeed the solution to the optimal stopping problem
G(y).

In summary, the protection buyer will continue to pay the
premium over time until the drawdown process D either falls to
the level θ∗ in (3.9) or reaches to the level k specified by the
contract, whichever comes first. In Fig. 2 (left), we illustrate the
optimal cancellation level θ∗. As shown in our proof, the optimal
stopping value function g(y) connects smoothly with the intrinsic
value f̃ (y) = f (y) − c at y = θ∗. In Fig. 2 (right), we show that
the fair premium P∗ is decreasing with respect to the protection
downdown size k. This is intuitive since the drawdown time τD(k)
is almost surely longer for a larger drawdown size k and the
payment at τD(k) is fixed at α. The protection buyer is expected
to pay over a longer period of time but at a lower premium rate.
Lastly, with the optimal cancellation strategy, we can also
compute the expected time to contract termination, either as a
result of a drawdown or voluntary cancellation. Precisely, we have

Proposition 3.4. For 0 < θ∗ < y < k, we have

EP{τ
−

D (θ∗) ∧ τD(k)|D0 = y}

=
(y − θ∗)ρτ (y − θ∗

; k − θ∗) + (y − k)e
2µ̃
σ2 (y−k)

ρτ (k − y; k − θ∗)

µ̃
, (3.12)

where ρτ (·, ·) is defined in Proposition 2.3.

Proof. According to the optimal cancellation strategy, we have

τ−

D (θ∗) ∧ τD(k) = τx+y−θ∗ ∧ τy−k, P-a.s.

where τw = inf{t ≥ 0 : Xt = w}. Applying the optional sampling
theorem to the uniformly martingale (Mt∧τx+y−θ∗∧τy−k)t≥0 with
Mt = Xt − µ̃t if µ̃ ≠ 0, or Mt = (Xt)

2
− σ 2t if µ̃ = 0, we obtain

the result in the (3.12). �

Remark 3.5. In the finite maturity case, the set of candidate
stopping times is changed to {τ ∈ F : 0 ≤ t ≤ T } in (3.1).
Like proposition (3.2), the contract value VT (y; p) at time zero for
premium rate p still admits the decomposition

VT (y; p) = −fT (0, y; p) + sup
0≤τ≤T

E{e−rτ (fT (τ ,Dτ ; p) − c)

× 1{τ<τD(k)} | D0 = y},

where

fT (t, y) =
p
r

−


α +

p
r


ξT (t, y),

and ξT (t, y) is the conditional Laplace transform of τD(k)∧ (T − t):

ξT (t, y) = E{e−r(τD(k)∧(T−t))
| Dt = y}, 0 ≤ t ≤ τD(k) ∧ T .

This problem is no longer time-homogeneous, and the fair
premium can be determined by numerically solving the associated
optimal stopping problem.

4. Incorporating drawup contingency

We now consider an insurance contract that provides protec-
tion from any specified drawdown with a drawup contingency.
This insurance contract may expire early, whereby stopping the
premium payment, if a drawup event occurs prior to drawdown
or maturity. From the investor’s viewpoint, the realization of a
drawup implies little need to insure against a drawdown. There-
fore, this drawup contingency is an attractive cost-reducing feature
to the investor.

4.1. The finite-maturity case

First, we consider the case with a finite maturity T . Specifically,
if a k-unit drawdown occurs prior to a drawup of the same size
or the expiration date T , then the investor will receive the insured
amount α and stop the premium payment thereafter. Hence, the
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(a) Smooth pasting. (b) Fair premium vs. k.

Fig. 2. Left panel: the optimal stopping value function g (solid) dominates and pastes smoothly onto the intrinsic value f̃ = f − c (dashed). It is optimal to cancel the
insurance as soon as the drawdown process falls to θ∗

= 0.05 (at which g and f̃ meets). The parameters are r = 2%, σ = 30%, y = 0.1, k = 0.3, c = 0.05, α = 1, and p
is taken to be the fair premium value P∗

= 1.5245. At y = 0.1, according to the fair premium equation V (y ; P∗) = 0, and hence g(y; θ∗) = f (y) here. Right panel: the fair
premium of the cancellable drawdown insurance decreases with respect to the drawdown level k specified for the contract.
risk-neutral discounted expected payoff to the investor is given by

v(y, z; p) = Ey,z


−

 τD(k)∧τU (k)∧T

0
e−rtpdt

+ αe−rτD(k)1{τD(k)≤τU (k)∧T }


, (4.1)

where the expectation is taken under the pricing measure
Qy,z(·) ≡ Q(· | D0 = y,U0 = z).

The fair premium P∗ is chosen such that the contract has value
zero at time zero, that is,

v(P∗) = 0. (4.2)

Applying (4.2) to (4.1), we obtain a formula for the fair premium:

P∗
=

rαEy,z
{e−rτD(k)1{τD(k)≤τU (k)∧T }}

1 − Ey,z{e−r(τD(k)∧τU (k)∧T )}
. (4.3)

As a result, the fair premium involves computing the expectation
Ey,z

{e−rτD(k)1{τD(k)≤τU (k)∧T }} and the Laplace transform of τD(k) ∧

τU(k) ∧ T .
In order to determine the fair premium P∗ in (4.3), we firstwrite

LTr := Ey,z
{e−rτD(k)1{τD(k)≤τU (k)∧T }} (4.4)

=

 T

0
e−rt ∂

∂t
Qy,z(τD(k) < τU(k) ∧ t) dt. (4.5)

The special case of the probability on the right-hand side,
Q0,0 is derived using results from Zhang and Hadjiliadis (2010,
Eqs. (39)–(40)), namely,

Q0,0(τD(k) < τU(k) ∧ t)

=
e−

2µk
σ2 +

2µk
σ 2 − 1

e−
µk
σ2 − e

µk
σ2

2 −

∞
n=1

2n2π2

C2
n

exp


−

σ 2Cn

2k2
t



×


1 − (−1)ne−

µk
σ2


1 +

n2π2σ 2t
k2

−
4µ2k2

σ 4Cn



+ (−1)n
µk
σ 2

e−
µk
σ2


, (4.6)
where Cn = n2π2
+ µ2k2/σ 4. Therefore, the expectation (4.5) can

be computed via numerical integration. In the general case that
y ∨ z > 0, we have the following result.

Proposition 4.1. In the model (2.4), for 0 ≤ y, z < k and y∨ z > 0,
we have

Qy,z(τD(k) ∈ dt, τU(k) > t)

= Fµ
y (t)dt + Gµ

z (t)dt − Gµ

k−y(t)dt, (4.7)

where

Fµ
y (t) :=

σ 2

k2

∞
n=1

(nπ)e
(y−k)µ

σ2 exp


−

σ 2Cn

2k2
t


sin

nπ(k − y)
k

, (4.8)

Gµ
z (t) :=

σ 2

k2

∞
n=1

(nπ)e−
µz
σ2 exp


−

σ 2Cn

2k2
t



×


n2π2σ 2t − 2k2

Cnk


nπ
k

cos
nπz
k

+
µ

σ 2
sin

nπz
k



+
nπ
Cn


nπ
k


2k2µ
Cnσ 2

+ z


sin

nπz
k

+


1 −

µz
σ 2

−
2µ2k2

Cnσ 4


cos

nπz
k


. (4.9)

Proof. We begin by differentiating both sides of (2.7) in Carr et al.
(2011) with respect to maturity t to obtain that

Qy,z(τD(k) ∈ dt, τU(k) > t)
= q(t, x, y + x − k, y + x)dt

+

 x−z

y+x−k

∂

∂k
q(t, x, u, u + k)du


dt, (4.10)

where

q(t, x, u, u + k)dt = Qy,z(τu ∈ dt, τu+k > t)

with τw := inf{t ≥ 0 : Xt = w} for w ∈ {u, u + k}. The function q,
derived in Theorem 5.1 of Anderson (1960), is given by



846 H. Zhang et al. / Insurance: Mathematics and Economics 53 (2013) 840–850
q(t, x, u, u + k) =
σ 2

k2

∞
n=1

(nπ)e
µ(u−x)

σ2

× exp


−

σ 2Cn

2k2
t


sin

nπ(x − u)
k

.

Integration yields (4.7) and this completes the proof. �

Similarly, we express the Laplace transform of τD(k)∧τU(k)∧T
as

Ey,z
{e−r(τD(k)∧τU (k)∧T )

}

= −

 T

0
e−rt ∂

∂t
Qy,z(τD(k) ∧ τU(k) > t)dt. (4.11)

To compute this, we notice that the equivalence of the probabilities
(under the reflection of the processes (X, X, X) about x):

Qy,z
µ (τU(k) ∈ dt, τD(k) > t)

= Qz,y
−µ(τD(k) ∈ dt, τU(k) > t). (4.12)

Therefore, we have

−
∂

∂t
Qy,z

µ (τD(k) ∧ τU(k) > t)dt

= Qy,z
µ (τD(k) ∈ dt, τU(k) > t)

+ Qy,z
µ (τU(k) ∈ dt, τD(k) > t)

= Fµ
y (t)dt + Gµ

z (t)dt − Gµ

k−y(t)dt + F−µ
z (t)dt

+G−µ
y (t)dt − G−µ

k−z(t)dt (4.13)

where Qy,z
µ denotes the pricing measure whereby X has drift µ.

Hence, we can again compute the Laplace transform of τD(k) ∧

τU(k) ∧ T by numerical integration, and obtain the fair premium
P∗ for the drawdown insurance via (4.3).

Remark 4.2. The expectation Ey,z
{e−rτD(k)1{τD(k)≤τU (k)∧T }} and the

Laplace transform of τD(k) ∧ τU(k) ∧ T are in fact linked. This is
seen through (4.12):

Ey,z
{e−r(τD(k)∧τU (k)∧T )

} = LTr + RT
r ,

where LTr is the expectation defined in (4.4), and

RT
r := Ey,z

{e−rτD(k)1{τD(k)≤τU (k)∧T }}. (4.14)

Remark 4.3. If the protection buyer pays a periodic premium at
times ti = i1t, i = 0, . . . , n − 1, with 1t = T/n, then the fair
premium is

p(n)∗
=

α Ey,z

e−rτD(k)1{τD(k)≤τU (k)∧T }


n−1
i=0

e−rtiQy,z{τD(k) ∧ τU(k) > ti}
. (4.15)

Compared to the continuous premium case, the fair premium p(n)∗

here involves a sum of the probabilities: Qy,z
{τD(k) ∧ τU(k) > ti},

each given by (4.13) above.

4.2. Perpetual case

Now, we consider the drawdown insurance contract that
will expire not at a fixed finite time T but as soon as a draw-
down/drawup of size k occurs. To study this perpetual case, we
take T = ∞ in (4.1). As the next proposition shows, we have a
simple closed-form solution for the fair premium P∗, allowing for
instant computation of the fair premium and amenable for sensi-
tivity analysis.
Proposition 4.4. The perpetual drawdown insurance fair premium
P∗ is given by

P∗
=

rαL∞
r

1 − L∞
r − R∞

r
, (4.16)

where

L∞

r = Fµ
y + Gµ

z − Gµ

k−y, R∞

r = F−µ
z + G−µ

y − G−µ

k−z, (4.17)

with

Fµ
y := e

µ

σ2 (y−k) sinh(yΞ r
µ,σ )

sinh(kΞ r
µ,σ )

,

Gµ
z :=

Ξ r
µ,σ

2r/σ 2

×

e−
µ

σ2 z

−

µ

σ 2 sinh(zΞ r
µ,σ ) − Ξ r

µ,σ cosh(zΞ r
µ,σ )


sinh2(kΞ r

µ,σ )
.

(4.18)

Proof. In the perpetual case, the fair premium is given by

P∗
=

rαEy,z
{e−rτD(k)1{τD(k)<τU (k)}}

1 − Ey,z{e−r(τD(k)∧τU (k))}
=

rαL∞
r

1 − L∞
r − R∞

r

where L∞
r = Ey,z

{e−rτD(k)1{τD(k)<τU (k)}} and R∞
r = Ey,z

{e−rτD(k)

1{τU (k)<τD(k)}}. To get formulas for L∞
r and R∞

r , we begin by mul-
tiplying both sides of (4.10) by e−rt and integrate out t ∈ [0, ∞).
Then we obtain that

L∞

r = Ey,z
{e−rτy+x−k1{τy+x−k<τy+x}}

+

 x−z

y+x−k

∂

∂k
Ey,z

{e−rτu1{τu<τu+k}}du,

where τw = inf{t ≥ 0 : Xt = w}. Using formulas in Borodin and
Salminen (1996, p. 295), we have that for u ≤ x−z < x+y ≤ u+k

Ey,z
{e−rτu1{τu<τu+k}} = e

µ

σ2 (u−x) sinh((u + k − x)Ξ r
µ,σ )

sinh(kΞ r
µ,σ )

,

∂

∂k
Ey,z

{e−rτu1{τu<τu+k}} = Ξ r
µ,σ e

µ

σ2 (u−x) sinh((x − u)Ξ r
µ,σ )

sinh2(kΞ r
µ,σ )

.

An integration yields L∞
r . The computation of R∞

r follows from the
discussion in the proof of Proposition 3.1. This completes the proof
of the proposition. �

Finally, the probability that a drawdown is realized prior to a
drawup, meaning that the protection amount will be paid to the
buyer before the contract expires upon drawup, is given by

Proposition 4.5. Let y, z ≥ 0 such that y + z < k, then

P(τD(k) < τU(k)|D0 = y,U0 = z)

= e
2µ̃
σ2 (y−k)

ρτ (k − y; k)

+
e−

2µ̃
σ2 (k−y)

+
2µ̃
σ 2 (k − y − z) − e−

2µ̃
σ2 z

4 sinh2


µ̃

σ 2 k
 , (4.19)

where ρτ (·; ·) is defined in Proposition 2.3.
Proof. From the proof of Proposition 4.4, we obtain that

P(τD(k) < τU(k)|D0 = y,U0 = z)

= lim
r→0+

(F µ̃
y + Gµ̃

z − Gµ̃

k−y)

= e
2µ̃
σ2 (y−k)

ρτ (k − y; k) + lim
r→0+

(Gµ̃
z − Gµ̃

k−y).

Finally, l’Hôpital’s rule yields the last limit and (4.19). �
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In Fig. 3 (left), we see that the fair premium increases with the
maturity T , which is due to the higher likelihood of the drawdown
event at or before expiration. For the perpetual case, we illustrate
in Fig. 3 (right) that higher volatility leads to higher fair premium.
From this observation, it is expected in a volatilemarket drawdown
insurance would become more costly.

5. Drawdown insurance on a defaultable stock

In contrast to a market index, an individual stock may experi-
ence a large drawdown through continuous downwardmovement
or a sudden default event. Therefore, in order to insure against the
drawdown of the stock, it is useful to incorporate the default risk
into the stock price dynamics. To this end, we extend our analysis
to a stock with reduced-form (intensity based) default risk.

Under the risk-neutral measure Q, the defaultable stock price S̃
evolves according to

dS̃t = (r + λ)S̃t dt + σ S̃t dWt − S̃t− dNt ,

S̃0 = s̃ > 0,
(5.1)

where λ is the constant default intensity for the single jump pro-
cess Nt = 1{t≥ζ }, with ζ ∼ exp(λ) independent of the Brown-
ian motion W under Q. At ζ , the stock price immediately drops to
zero and remains there permanently, i.e. for a.e. ω ∈ Ω, S̃t(ω) =

0, ∀t ≥ ζ (ω). Similar equity models have been considered e.g. in
Merton (1976) and more recently Linetsky (2006), among others.

The drawdown events are defined similarly as in (2.5) where
the log-price is now given by

X̃t =

log S̃0 +


r + λ −

1
2
σ 2

t + σWt , t < ζ

−∞, t ≥ ζ .

We follow a similar definition of the drawdown insurance contract
from Section 2. One major effect of a default event is that it
causes drawdown and the contract will expire immediately. In the
perpetual case, the premium payment is paid until τD(k) ∧ τU(k)
if it happens before both the default time ζ and the maturity T ,
or until the default time ζ if T ≥ τD(k) ∧ τU(k) ≥ ζ . Notice
that, if no drawup or drawdown of size k happens before ζ , then
the drawdown time τD(k) will coincide with the default time,
i.e. τD(k) = ζ . The expected value to the buyer is given by

v(y, z; p) = Ey,z


−

 τD(k)∧τU (k)∧ζ∧T

0
e−rtpdt

+ αe−rτD(k)1{τD(k)≤τU (k)∧ζ∧T }


. (5.2)

Again, the stopping times τD(k) and τU(k) based on X̃ do not
depend on x, and therefore, the contract value v is a function of
the initial drawdown y and drawup z.

Under this defaultable stock model, we obtain the following
useful formula for the fair premium.

Proposition 5.1. The fair premium for a drawdown insurance
maturing at T , written on the defaultable stock in (5.1) is given by

P∗
=

α{rLTr+λ + λ − λRT
r+λ − λe−(r+λ)TQy,z(τD(k) ∧ τU (k) ≥ T )}

1 − LTr+λ − RT
r+λ − e−(r+λ)TQy,z(τD(k) ∧ τU (k) ≥ T )

, (5.3)

where LTr+λ and RT
r+λ are given in (4.5) and (4.14), respectively.

Proof. As seen in (4.3), the fair premium P∗ satisfies

P∗
=

rαEy,z
{e−rτD(k)1{τD(k)≤τU (k)∧ζ∧T }}

1 − Ey,z{e−r(τD(k)∧τU (k)∧ζ∧T )}
. (5.4)
We first compute the expectation in the numerator.

Ey,z
{e−rτD(k)1{τD(k)≤τU (k)∧ζ∧T }}

=

 T

0
λe−λtEy,z

{e−rτD(k)1{τD(k)≤τU (k)∧t}}dt

+ Ey,z
{e−rτD(k)1{τD(k)≤τU (k)∧T }} · Qy,z(ζ > T )

+ Ey,z
{e−rζ1{τD(k)∧τU (k)≥ζ ,ζ<T }}

=

 T

0
e−(r+λ)s ∂

∂s
Qy,z(τD(k) ≤ τU(k) ∧ s)ds

+

 T

0
λe−(r+λ)tQy,z(τD(k) ∧ τU(k) ≥ t)dt

= LTr+λ +
λ

r + λ


1 − e−(r+λ)TQy,z(τD(k) ∧ τU(k) ≥ T )

+

 T

0
e−(r+λ)t ∂

∂t
Qy,z(τD(k) ∧ τU(k) ≥ t)dt



= LTr+λ +
λ

r + λ
{1 − e−(r+λ)TQy,z(τD(k) ∧ τU(k) ≥ T )

− LTr+λ − RT
r+λ}. (5.5)

Next, the Laplace transform of τD(k) ∧ τU(k) ∧ ζ ∧ T is given by

Ey,z
{e−r(τD(k)∧τU (k)∧ζ∧T )

}

= Ey,z
{e−r(τD(k)∧τU (k))1{τD(k)∧τU (k)<ζ∧T }}

+ e−rTQy,z(τD(k) ∧ τU(k) > T , ζ > T )

+ Ey,z
{e−rζ1{τD(k)∧τU (k)≥ζ ,ζ<T }}

=

 T

0
e−(r+λ)s ∂

∂s
Qy,z(τD(k) ∧ τU(k) ≤ s)ds

+ e−(r+λ)TQy,z(τD(k) ∧ τU(k) > T ) +
λ

r + λ
{1

− e−(r+λ)TQy,z(τD(k) ∧ τU(k) ≥ T ) − LTr+λ − RT
r+λ}

= LTr+λ + RT
r+λ +

λ

r + λ
{1 − LTr+λ − RT

r+λ}

+ e−(r+λ)T r
r + λ

Qy,z(τD(k) ∧ τU(k) ≥ T )

=
λ

r + λ
+

r
r + λ

{LTr+λ + RT
r+λ

+ e−(r+λ)TQy,z(τD(k) ∧ τU(k) ≥ T )}. (5.6)

Rearranging (5.5) and (5.6) yields (5.3). �

By taking T → ∞ in (5.3), we obtain the fair premium for the
perpetual drawdown insurance in closed form.

Proposition 5.2. The fair premium for the perpetual drawdown
insurance written on the defaultable stock in (5.1) is given by

P∗
=

α

rL∞

r+λ + λ − λR∞

r+λ


1 − L∞

r+λ − R∞

r+λ

, (5.7)

where L∞

r+λ and R∞

r+λ are given in (4.17).

In Fig. 4, we illustrate for the perpetual case that the fair
premium is increasing with the default intensity λ and approaches
αλ for high default risk. This observation, which can be formally
shown by taking the limit in (5.7), is intuitive since high default
risk implies that a drawdownwill more likely happen and that it is
most likely triggered by a default.
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(a) Fair premium vs. maturity T . (b) (Perpetual) fair premium vs. volatility σ .

Fig. 3. Left panel: the fair premium of a drawdown insurance is increasing with the maturity T . Right panel: the fair premium of a perpetual drawdown insurance also
increases with volatility σ . The parameters are r = 2%, y = z = 0.1, α = 1, and k = 50% (left).
Fig. 4. The fair premium (solid) as a function of the default intensity λ, which
dominates the straight dashed line αλ. As λ → ∞, the fair premium P∗

→ αλ.
Parameters: r = 2%, σ = 30%, y = z = 0.1, k = 0.5, α = 1.

6. Conclusions

We have studied the practicality of insuring against market
crashes and proposed a number of tractable ways to value
drawdown protection. Under the geometric Brownian motion
dynamics, we provided the formulas for the fair premium for a
number of insurance contracts, and examine its behavior with
respect to key model parameters. In the cancellable drawdown
insurance,we showed that the protection buyerwouldmonitor the
drawdown process and optimally stop the premium payment as
the drawdown risk diminished. Also, we investigated the impact
of default risk on drawdown and derived analytical formulas for
the fair premium.

For future research, we envision that the valuation and optimal
stopping problems herein can be studied under other price dynam-
ics, especially when drawdown formulas, e.g. for Laplace trans-
forms and hitting time distributions, are available (see Pospisil
et al., 2009 for the diffusion case). Although we have focused our
analysis on drawdown insurance written on a single underlying
asset, it is both interesting and challenging to model drawdowns
acrossmultiple financial markets, and investigate the systemic im-
pact of a drawdown occurred in one market. This would involve
modeling the interactions among various financial markets (Eisen-
berg andNoe, 2001) and developing newmeasures of systemic risk
(Adrian and Brunnermeier, 2009). Lastly, the idea of market draw-
down and the associated mathematical tools can also be useful in
other areas, such as portfolio optimization problems (Grossman
and Zhou, 1993; Cvitanić and Karatzas, 1995), risk management
(Chekhlov et al., 2005), and signal detection (Poor and Hadjiliadis,
2008).
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Appendix. Proof of lemmas

A.1. Conditional Laplace transform of drawdown time

In order to prepare for our subsequent proofs on the cancellable
drawdown insurance in Section 3, we now summarize a number
properties of the conditional Laplace transform of τD(k) (see (2.8)).

Proposition A.1. The conditional Laplace transform function ξ(·)
has the following properties:

1. ξ(·) is positive and increasing on (0, k).
2. ξ(·) satisfies differential equation

1
2
σ 2ξ ′′(y) − µξ ′(y) = rξ(y), (A.1)

with the Neumann condition

ξ ′(0) = 0.

3. ξ(·) is strictly convex, i.e., ξ ′′(y) > 0 for y ∈ (0, k).

Proof. Property (i) follows directly from the definition of ξ(y)
and strong Markov property. Property (ii) follows directly from
differentiation of (2.9). For property (iii), the proof is as follows.
If µ ≥ 0, then (A.1) implies that

ξ ′′(y) =
2µ
σ 2

ξ ′(y) +
2r
σ 2

ξ(y) > 0, y ∈ (0, k).
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If µ < 0, then (2.11) and (A.1) imply that for y ∈ (0, k),

ξ ′(y) =


Ξ r

µ,σ +
µ

σ 2


ξ(y) − e


µ

σ2 −Ξ r
µ,σ


y
ξ(0)


, (A.2)

ξ ′′(y) =
2µ
σ 2

ξ ′(y) +
2r
σ 2

ξ(y)

=


Ξ r

µ,σ +
µ

σ 2

2

ξ(y) −
2µ
σ 2


Ξ r

µ,σ +
µ

σ 2


× e


µ

σ2 −Ξ r
µ,σ


y
ξ(0) > 0. (A.3)

The last inequality follows from the fact that µ < 0 and Ξ r
µ,σ +

µ

σ 2 > 0. Hence, strict convexity follows. �

A.2. Proof of Lemma 3.2

In view of (3.9), we seek the root θ∗ of the equation:

F(θ) :=


µ

σ 2
− Ξ r

µ,σ coth(Ξ r
µ,σ (k − θ))


f̃ (θ) − f̃ ′(θ) = 0. (A.4)

To this end, we compute

F ′(θ) = −
(Ξ r

µ,σ )2

(sinh(Ξ r
µ,σ (k − θ)))2

f̃ (θ)

−


Ξ r

µ,σ coth(Ξ r
µ,σ (k − θ)) −

µ

σ 2


f̃ ′(θ) − f̃ ′′(θ). (A.5)

Since f is monotonically decreasing from f̃ (0) > 0 to f̃ (k) =

−α − c < 0, there exists a unique θ0 ∈ (0, k) such that f̃ (θ0) = 0.
We have F(θ0) = −f̃ ′(θ0) > 0 by (A.4) and F(0) = (

µ

σ
−

Ξ r
µ,σ coth(Ξ r

µ,σ k))f̃ (0) < 0, which implies that F(θ) = 0 has at
least one solution θ∗

∈ (0, θ0). Moreover, for θ ∈ (θ0, k), f̃ (θ) < 0
and hence F(θ) > 0 by (A.4), there is no root in (θ0, k).

Next, we show the root is unique by proving that F ′(θ) > 0 for
all θ ∈ (0, θ0). To this end, we first observe from (2.6) that f̃ can
be expressed as f̃ (θ) = C(ξ(θ0) − ξ(θ)), for θ, θ0 ∈ (0, k), where
C = (α +

p
r ) > 0 and Cξ(θ0) =

p
r − c . Putting these into (A.5), we

express F ′(θ) in terms ξ instead of f̃ . In turn, verifying F ′(θ) > 0 is
reduced to:

Lemma A.2.

inf
0<θ<θ0<k


ξ ′′(θ) +


Ξ r

µ,σ coth(Ξ r
µ,σ (k − θ)) −

µ

σ 2


ξ ′(θ)

+
(Ξ r

µ,σ )2

(sinh(Ξ r
µ,σ (k − θ)))2

(ξ(θ) − ξ(θ0))


≥ 0,

and the infimum is attained at θ = θ0 = k.

Proof. We begin by using (A.1) to rewrite the statement in the
lemma as

inf
0<θ<θ0<k


Ξ r

µ,σ coth(Ξ r
µ,σ (k − θ)) +

µ

σ 2


ξ ′(θ)

+


(Ξ r

µ,σ )2 coth2(Ξ r
µ,σ (k − θ)) −

µ2

σ 4


ξ(θ)

−
(Ξ r

µ,σ )2

sinh2(Ξ r
µ,σ (k − θ))

ξ(θ0)


≥ 0.

By the strongMarkovproperty of processD·, the function ξ satisfies
a more general version of (2.11). Specifically, for 0 ≤ y1, y2 < k,
ξ(y2) = e
µ

σ2 (y2−k) sinh(Ξ r
µ,σ (y2 − y1))

sinh(Ξ r
µ,σ (k − y1))

+ e
µ

σ2 (y2−y1) sinh(Ξ r
µ,σ (k − y2))

sinh(Ξ r
µ,σ (k − y1))

ξ(y1). (A.6)

Define for y ∈ [0, k),

Λ(y) =
e−

µy
σ2 ξ(y)

sinh(Ξ r
µ,σ (k − y))

. (A.7)

Then function Λ(·) satisfies (see (A.6))

Λ(y2) − Λ(y1) =
e−

µk
σ2 sinh(Ξ r

µ,σ (y2 − y1))

sinh(Ξ r
µ,σ (k − y1)) · sinh(Ξ r

µ,σ (k − y2))
,

∀y1, y2 ∈ [0, k), (A.8)

from which we can easily obtain that

Λ′(y) =
Ξ r

µ,σ e
−

µk
σ2

sinh2(Ξ r
µ,σ (k − y))

> 0, ∀y ∈ [0, k). (A.9)

Straightforward computation shows that

Λ′(y) = e−
µy
σ2


Ξ r

µ,σ coth(Ξ r
µ,σ (k − y)) −

µ

σ 2


ξ(y) + ξ ′(y)

sinh(Ξ r
µ,σ (k − y))

> 0, ∀y ∈ [0, k).

Thus,

ξ ′(y) = Λ′(y)e
µy
σ2 sinh(Ξ r

µ,σ (k − y))

−


Ξ r

µ,σ coth(Ξ r
µ,σ (k − y)) −

µ

σ 2


ξ(y). (A.10)

Using (A.10), the above inequality is equivalent to

inf
0<θ<θ0<k


Λ′(θ)


e

µθ

σ2


Ξ r

µ,σ cosh(Ξ r
µ,σ (k − θ))

+
µ

σ 2
sinh(Ξ r

µ,σ (k − θ))


− Ξ r

µ,σ e
µk
σ2 ξ(θ0)


≥ 0.

Let us denote by

H(θ, θ0) = e
µθ

σ2


Ξ r

µ,σ cosh(Ξ r
µ,σ (k − θ))

+
µ

σ 2
sinh(Ξ r

µ,σ (k − θ))


− Ξ r

µ,σ e
µk
σ2 ξ(θ0).

We will show that

inf
0<θ<θ0<k

H(θ, θ0) ≥ 0.

Notice that for θ ∈ [0, θ0],
∂H
∂θ

= −
2r
σ 2

e
µθ

σ2 sinh(Ξ r
µ,σ (k − θ)) < 0,

therefore

inf
0≤θ≤θ0

H(θ, θ0) = H(θ0, θ0).

Moreover,
∂

∂θ0
H(θ0, θ0) = −

2r
σ 2

e
µθ0
σ2 sinh(Ξ r

µ,σ (k − θ0))

− Ξ r
µ,σ e

µk
σ2 ξ ′(θ0) < 0.
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As a result,

inf
0≤θ≤θ0<k

H(θ, θ0) = H(k, k) = 0.

This completes the proof of Lemma A.2. �

Since our problem concerns θ < θ0 < k, Lemma A.2 says
F ′(θ) > 0 for θ ∈ (0, θ0), which confirms that there is at most
one solution to equation F(θ) = 0. This concludes the uniqueness
of smooth pasting point θ∗

∈ (0, θ0).

A.3. Proof of Lemma 3.3

Proof. Let us consider

J(y) := g(y; θ∗) − f̃ (y) = C(β(y)(ξ(θ0)

− ξ(θ∗)) + ξ(y) − ξ(θ0)), y ∈ [θ∗, k).

We check its derivatives with respect to x:

J ′(y) = C

β ′(y)(ξ(θ0) − ξ(θ∗)) + ξ ′(y)


, (A.11)

J ′′(y) = C

β ′′(y)(ξ(θ0) − ξ(θ∗)) + ξ ′′(y)


, (A.12)

where

β(y) =
g(y; θ∗)

f (θ∗)
= e

µ

σ2 (y−θ∗) sinh(Ξ r
µ,σ (k − y))

sinh(Ξ r
µ,σ (k − θ∗))

,

y ∈ (θ∗, k). (A.13)

Using probabilistic nature of function β(·) we know that it is
positive and decreasing. Therefore, if µ ≤ 0, we have

β ′′(y) =
2µ
σ 2

β ′(y) +
2r
σ 2

β(y) > 0 ⇒ J ′′(y) ≥ Cξ ′′(y) > 0.

On the other hand, if µ > 0, from (A.13) we have

β ′(y) =

 µ

σ 2
− Ξ r

µ,σ


β(y) +

Ξ r
µ,σ e

µ

σ2 (y−θ∗)−Ξ r
µ,σ (k−y)

sinh(Ξ r
µ,σ (k − θ∗))

,

β ′′(y) =
2µ
σ 2

β ′(y) +
2r
σ 2

β(y) =


Ξ r

µ,σ −
µ

σ 2

2
β(y) +

2µ
σ 2

×
Ξ r

µ,σ e
µ

σ2 (y−θ∗)−Ξ r
µ,σ (k−y)

sinh(Ξ r
µ,σ (k − θ∗))

> 0,

⇒ J ′′(y) ≥ Cξ ′′(y) > 0.

So in either case (µ ≤ 0 or µ > 0), J ′(·) is an increasing function,
and

J ′(y) > J ′(θ∗) = 0, ∀y ∈ (θ∗, k),

which implies that

J(y) > J(θ∗) = 0, ∀y ∈ (θ∗, k).

This completes the proof. �
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