
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gssr20

Stochastics
An International Journal of Probability and Stochastic Processes

ISSN: 1744-2508 (Print) 1744-2516 (Online) Journal homepage: http://www.tandfonline.com/loi/gssr20

Quickest detection in the Wiener disorder problem
with post-change uncertainty

Heng Yang, Olympia Hadjiliadis & Michael Ludkovski

To cite this article: Heng Yang, Olympia Hadjiliadis & Michael Ludkovski (2017) Quickest
detection in the Wiener disorder problem with post-change uncertainty, Stochastics, 89:3-4,
654-685, DOI: 10.1080/17442508.2016.1276908

To link to this article:  https://doi.org/10.1080/17442508.2016.1276908

Published online: 09 Jan 2017.

Submit your article to this journal 

Article views: 83

View Crossmark data



STOCHASTICS, 2017
VOL. 89, NOS. 3–4, 654–685
http://dx.doi.org/10.1080/17442508.2016.1276908

Quickest detection in the Wiener disorder problemwith
post-change uncertainty

Heng Yanga, Olympia Hadjiliadisb,c and Michael Ludkovskid

aDepartment of Mathematics, Graduate Center of City University of New York, New York, NY, USA;
bDepartment of Mathematics and Computer science, Graduate Center of City University of New York,
New York, NY, USA; cDepartment of Mathematics and Statistics, Hunter College, New York, NY, USA;
dDepartment of Statistics and Applied Probability, University of California Santa Barbara, Santa Barbara, CA,
USA

ABSTRACT

We consider the problem of quickest detection of an abrupt change
when there is uncertainty about the post-change distribution. In
particular, we examine this problem in the continuous-time Wiener
model where the drift of observations changes from zero to a
random drift with a prescribed discrete distribution. We set up the
problem as a stochastic optimization in which the objective is to
minimize a measure of detection delay subject to a constraint on
frequency of false alarms. We design a novel composite stopping rule
and prove that it is asymptotically optimal of third order under a
weighted Lorden’s criterion for detection delay. We also develop the
strategy to identify the post-change drift and analyze the conditional
identification error asymptotically. Our composite rules are based on
CUSUM stopping times, as well as their reaction periods, namely the
times between the last reset of the CUSUM statistic process and
the CUSUM alarm. The established results shed new light on the
performance of CUSUM strategies under model uncertainty and offer
strong asymptotic optimality results in this framework.
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1. Introduction

The detection problem is concerned with detecting a change in the statistical behaviour
of sequential observations by balancing the trade-off between a small detection delay and
frequency of false alarms. In the classical (non-Bayesian) formulation, the change point
is treated as an unknown but fixed constant, and the post-change behaviour is assumed
to be known. Under those assumptions, the resulting min–max problem is optimally
solved by the Cumulative Sum (CUSUM) rule, see e.g. [17]. However, the performance of
the CUSUM rule is highly sensitive to the signal strength [24]. This is a major practical
challenge because typically the post-change signal is uncertain. For example, in radar
systems (see [21]) one transmits a pulse, waiting for a potential return signal reflected
from a target. One then must decide whether the observations imply the presence of such
a target, which induces different signal strengths depending on its identity and properties.
In a different context, quickest detection has been applied for identifying infectious disease
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epidemics, where signal strength corresponds to the infectivity parameter which varies
widely outbreak-to-outbreak (see [13,15] for example). Arguably, any realistic setup must
consider some model uncertainty; this issue remains a major weakness of existing min–
max models.

To date, there is scarce literature for designing optimal rules under uncertain signal
strength in the non-Bayesian framework. The performance of the CUSUM stopping time
in the detection problem with uncertainty is discussed in [27], where it is observed that
the CUSUM stopping time is no longer second order asymptotically optimal. In this work,
we contribute to this question by designing a third-order asymptotically optimal rule for
a class of continuous-time quickest detection problems with uncertainty about the post-
change distribution. Due to the difficulty to obtain an optimal solution for the complicated
detection problem, many studies focus on the asymptotically optimal solutions which
are very important from both theoretical and practical points of view (see [8,20] for
example). Among the asymptotically optimal results, our work is able to achieve third-
order asymptotic optimality (see [7]), that is the strongest optimality result to date in any
change-point detection model with post-change uncertainty. Specifically, we work with
Wiener observations, modelling the post change driftm via a given finite positive discrete
distribution that is independent of pre-change observations. As a motivating example, we
analyze the binary case, whereby the signal is either weak, represented by a small driftm1,
or strong, represented by a larger driftm2.

Our main results are threefold. First, we develop a novel family of composite stopping
times that combines multiple CUSUM policies along with the CUSUM reaction period
(CRP). This family has several desirable behaviours and offers a flexible extension of
the classical CUSUM framework. Second, we design and rigorously establish third-order
asymptotic optimality for the problem of detecting aWiener disorder with uncertain post-
change drift. This is the strongest result to date in anymodel with post-change uncertainty.
Third, we also analyze the question of distinguishing the different values of post-change
drift and prove an asymptotic identification result for our composite stopping rules. In
combination, these findings constitute a first step towards rigorous treatment of models
with random post-change drifts, thereby extending the range of feasible applications of
sequential detection.

Measurement of detection performance under model uncertainty is ambiguous. A
worst-case analysis essentially reduces to considering the weakest possible signal strength
[10]. This may not be the best approach in applications since it leads to increased detection
delays in the typical scenario. At the same time, in many problems the decision maker has
some idea about likely signal strengths so it is reasonable to specify a distribution for the
post-change drift m (and furthermore reasonable to assume independence between the
observed signal and the pre-change observations). In contrast, the timing of the signal is
very difficult to model and the usual Bayesian formulation imposes strong independence
assumptions on data vs. change-point that are likely to be violated. Motivated by these
considerations, we propose a weighted Lorden’s criterion [14] for detecting the unknown
constant change point τ . Namely, our problem is that of finding a stopping time to
minimize weighted detection delay subject to a frequency of false alarm constraint, with
weights given by the probabilities of each of the post-change drifts.

The detection rules we investigate are compositions of CUSUM stopping times with
specially chosen threshold parameters. The compositions are based on the CRP, which is
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defined as the time between the last reset of the CUSUM statistic process and the time at
which the CUSUM stopping time draws an alarm. This statistic is related to last passage
time distributions and has been studied in the literature (see, for instance, [12,19,28])
in various ways, including the use of the method of enlargement of filtration (see, for
instance, [11,23]). We show that the CRP distribution is highly sensitive to post-change
drift, offering a probabilistic result of independent interest that highlights new features of
CUSUM stopping times.

Since we explicitly fix a (prior) distribution of the post-change drift, our work can be
seen as a blend of min–max and Bayesian approaches. In the Bayesian framework, the
case of uncertainty in the post-change drift in Wiener observations was considered in
[2,3]. The case of uncertainty in post-change parameters has also been studied in Poisson
observations in [1,16]. Mixed Wiener and Poisson observations are treated in [5]; see also
the recent work on efficient numerical algorithms for the mixed problem in [15]. Our
work extends these results to the more conservative/agnostic Lorden framework, while
maintaining provable third order asymptotic optimality.

The rest of the paper is organized as follows. In Section 2, we set up the sequential
detection problem mathematically and provide a criterion to measure detection delay in
our setting. In Section 3, we construct the composite stopping time Tcom. The main results
are in Section 4, where we show that the composite Tcom is asymptotically optimal of
third order as the mean time to the first false alarm increases without bound. Section 4.2
then discusses the identification function associated with Tcom. We also compare with
other commonly used stopping times, such as the generalized likelihood ratio [25] and the
mixture likelihood ratio [26] rules, to show that our composite stopping time can provide
higher order asymptotic optimality. The details are given in Appendix 2. In Section 5, we
use examples to discuss the performance of the composite stopping time. In Section 6, we
generalize to the case of three or more values for the post-change drift. Section 7 contains
the proofs of properties and facts related to the CRP. All the other proofs are given in
Appendix 1.

2. Mathematical setup

2.1. The detection problem

We observe the process {Zt}t≥0 on a sample space (�,F)with the initial value Z0 = 0. The
distribution of the observations may undergo a disorder at the fixed but unknown change
time τ .

Without any change point, which formally corresponds to τ = +∞, the observation
process is a standard Brownianmotion and its law is given by theWiener measure P∞. For
any finite τ , we assume that the observation process changes from a standard Brownian
motion to a Brownian motion with driftm; that is

dZt :=
{
dWt t < τ

m dt + dWt t ≥ τ.
(1)

The post-change driftmmay take values in the finite collection {m1, . . . ,mN } for some
known constants 0 < m1 < m2 < · · · < mN . The case of negative drifts can be addressed
by similar arguments.
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We assume that the probability space supports a uniform random variable U that
is independent of {Zt}∞t=0 and define the filtration Gt = σ(U) ∨ σ({Zs}s≤t). Note that
G0 = σ(U). This extra enlargement of the natural filtration ofZ is to enable randomization.

For each i = 1, . . . ,N , we introduce the family of measures Pmi
τ , τ ∈ [0,∞),

i = 1, . . . ,N , defined on this filtration, such that under Pmi
τ the drift of Z is zero until

τ andmi for t ≥ τ . The uncertainty regardingm is modelled by a probability measure

Pmτ =
∑
i

piPmi
τ ,

where the weights pi can be interpreted as the likelihood or relative importance of the case
m = mi with

∑
pi = 1. In the special case N = 2, m can be viewed as coming from a

Bernoulli distribution, taking the valuem1 with probability p = p1 and the valuem2 > m1
with probability 1 − p = p2.

Our basic goal is to detect the change point τ by finding a G-stopping time T that
balances the trade off between a small detection delay and the constraint on the frequency
of false alarm. To this end, we need a measure of detection delay that takes into account
the observation path {Zt} and the different values of the post-change drift.

For any G-stopping stopping time T , we define the worst detection delay between the
change time τ and its estimator T given the post-change driftm = mi for i = 1, . . . ,N in
the paradigm of Lorden [14]

Ji(T) := sup
τ≥0

esssup
ω∈Gτ

Emi
τ [(T − τ)+|Gτ ]. (2)

Here, we take the essential supremum over all path up to time τ in Gτ and take supremum
over all possible change time τ . This is co-called ‘worst detection delay’. Since m is
unknown, we take the average over Ji’s according to the weights pi,

J(T) :=
N∑
i=1

piJi(T). (3)

The choice pi = 1 reduces to the post-change drift being a known constantmi.
At the same time, when there is no change, E∞[T] gives the mean time to the first false

alarm of the G-stopping time T . To control false alarms, we require E∞[T] ≥ γ for some
(large) constant γ > 0. The quickest detection problem can now be represented via

inf
T∈T1

J(T) where T1 := {G − stopping time T: E∞[T] ≥ γ }. (P)

As usual (see, e.g. [18]), the latter inequality constraint can be reduced to equality
E∞[T] = γ . Since for any T with E∞[T] > γ , one may define a randomized rule T̂ such
that E∞[T̂] = γ and T̂ ≤ T whereby Ji(T̂) ≤ Ji(T) (namely take T̂ = T · 1{U<γ /E∞[T]}
where U ∼ U(0, 1) is independent).
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2.2. Lower bound for detection delay

We use the big-O and small-o notations in the usual way, see Appendix 1 for details.
Fixing the post-change drift as m = mi, it is well-known that the CUSUM stopping time
is optimal for the detection problem (see Theorem 6.12 in Poor and Hadjiliadis [22] for
example). This generates the following lower bound on J(T).
Lemma 2.1: For anyG-stopping time T ∈ T1(γ ), we have the lower bound on the detection
delay J(T) as

J(T) ≥LB(γ ) :=
N∑
i=1

2pi
m2

i
g

(
f −1

(
m2

i γ

2

))
, (4)

where

g(x) =e−x + x − 1 and f (x) = ex − x − 1, x > 0. (5)

Moreover, as γ → ∞, we have

LB(γ ) =
N∑
i=1

2pi
m2

i

(
ln γ + ln

m2
i
2

− 1

)
+ oγ (1) (6)

and thus,

lim
γ→∞

LB(γ )

ln γ
=

N∑
i=1

2pi
m2

i
. (7)

See Appendix 1 for the proof of Lemma 2.1.

3. Construction of Tcom

In this section we introduce a class of composite stopping times to solve the problem (P).
For notational clarity, we first present the case of N = 2.

3.1. CUSUM reaction period

We begin by recalling the definition of a CUSUM stopping time with tuning parameter λ

as it appears in Hadjiliaids [9] and Hadjiliadis andMoustakides [10]. Consider a process ξ

which is Brownianmotionwith driftM on a probability space (�,F ,Q). For any constants
	 and K > 0, a CUSUM stopping time with tuning parameter 	 is defined as

T(ξ ,	,K) := inf
{
t ≥ 0 : yt ≥ K

}
(8)

where the related CUSUM statistic process with tuning parameter 	 is

yt := Vt − inf
s≤t

Vs and Vt := 	ξt − 1
2
	2t. (9)
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Figure 1. Distribution of the CRP. The solid curve gives the density function of CRP related to Brownian
motion with drift 5; the dashed curve gives the density of CRP related to Brownian motion with drift
2.The tuning parameter of CUSUM is 1 and the threshold is 4.83.

Thus, T(ξ ,	,K) is announced as soon as the non-negative CUSUM statistic process
yt hits the threshold K . Corresponding to any G-stopping time T	

K := T(ξ,	,K) of the
CUSUM form, there is the last reset time ρ:

ρ(ξ,	,K) := sup
{
t ∈ [0,T	

K ) : Vt = inf
s≤t

Vs

}
. (10)

The CRP of T(ξ,	,K) is then defined as

S(ξ ,	,K) := T(ξ ,	,K) − ρ(ξ ,	,K). (11)

Introduced by Hadjiliadis and Zhang [28], the CRP measures the elapsed time between
the last reset when the CUSUM process yt was zero and the hitting time by yt of K .
Lemma 7.1 gives the explicit density of S(ξ,	,K) for the above case of ξ being a Brownian
motion with drift.

One property of CRP is shown in Figure 1 which illustrates the difference between the
distributions of S(ξ ,	,K) for two processes dξ1 = 5dt + dWt and dξ2 = 2dt + dWt with
parameters 	 = 1 and K = 4.83. The graph shows that the CRP distribution is highly
sensitive to the drift of ξ . In the case of ξ1, the CRP is likely to be small, and in the case of ξ2
it is likely to be large. The threshold b = 1.44 determines the regions where the respective
distribution densities cross-over. Thus, CRP may be used to distinguish different drifts of
the observation process.

3.2. Composite stopping time Tcom

We now design a composite CUSUM-based G-stopping stopping time that involves the
CRP.

The composite stopping time Tcom is constructed in two stages. In the first stage, we
apply the CUSUM stopping time defined in (8) denoted by

Tλ
ν := T(Z, λ, ν)
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with the parameters λ ∈ (0, 2m1) and ν > 0, where Z := {Zt}t≥0 is the observation path.
The CRP of the first stage defined in (11) and the last reset time defined in (10) are denoted
by

Sν := S(Z, λ, ν) and ρλ
ν := ρ(Z, λ, ν). (12)

Define the reset time shift function θs of the process of the observations for a time s ≥ 0,

θs(Z)(t) := Zt+s − Zs and θs(Z) := {Zt+s − Zs}t≥0.

Note that θs makes the path re-start from zero at time s. We use θ to define the second-
stage G-stopping times Tμ1

h1 and Tμ2
h2 as follows:

Tμ1
h1 := T(θTλ

ν
(Z),μ1, h1) and Tμ2

h2 := T(θTλ
ν
(Z),μ2, h2), (13)

whereμi’s are constants satisfying 0 < μi < 2m1 and hi > 0 are the second-stage thresholds
for i = 1, 2. In the second stage, we apply one of the two stopping times Tμ1

h1 or Tμ2
h2 ,

depending on the value of Sν from the first stage. In particular, if Sν ≥ bν for a parameter
bν > 0, we run the second stage Tμ1

h1 . On the other hand, if Sν < bν , we run the second
stage Tμ2

h2 . So the composite stopping time Tcom is defined as

Tcom := Tλ
ν +

(
1{Sν≥bν}Tμ1

h1 + 1{Sν<bν}Tμ2
h2

)
=
{
Tλ

ν + Tμ1
h1 if {Sν ≥ bν}

Tλ
ν + Tμ2

h2 if {Sν < bν}.
(14)

The diagram below illustrates the construction of Tcom.

Tλ
ν

Tμ2
h2

Sν < bν

Tμ1
h1Sν ≥ bν

3.3. Detection delay of Tcom

The next lemma provides the expressions for expected value of Tcom under the measures
P∞ and Pmi

0 .
Lemma 3.1: For the composite G-stopping time Tcom defined in (14), we have

E∞
[
Tcom

] = F(λ, ν) + P∞(Sν ≥ bν)F(μ1, h1) + P∞(Sν < bν)F(μ2, h2) (15)
Emi
0 [Tcom] = Gi(λ, ν) + Pmi

0 (Sν ≥ bν)Gi(μ1, h1) + Pmi
0 (Sν < bν)Gi(μ2, h2),

where

F(x, y) = 2
x2

f (y) and Gi(x, y) = 2
(2mi − x)2

g
(
2mi − x

x
y
)

(16)

for y > 0 and f , g are in (5).
See Appendix 1 for the proof of Lemma 3.1.
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From the results in Hadjiliadis and Moustakides [10] and Moustakides [18], it can be
seen that the detection delay of Tcom givenm = mi satisfies

Ji(Tcom) = Emi
0
[
Tcom

]
. (17)

Moreover, it is easy to see that f (x) = ex +Ox(x) on ( − ∞,∞), g(x) = x − 1+ ox(1) on
(0,∞) and g(x) = e−x + Ox(x) on ( − ∞, 0) as x → ∞. It follows that:

lim
y→∞ F(x, y)e−y = 2

x2
;

lim
y→∞Gi(x, y)y−1 = 2

(2mi − x)x
, when

2mi − x
x

> 0;

lim
y→∞Gi(x, y)e

2mi−x
x y = 2

(2mi − x)2
, when

2mi − x
x

< 0. (18)

From Equations (5), (15) and (16), we obtain

E∞
[
Tcom

] = 2
λ2

eν + 2P∞(Sν ≥ bν)

μ2
1

eh1 + 2P∞(Sν < bν)

μ2
2

eh2 + C(ν, h1, h2), (19)

where C(ν, h1, h2) is a linear function of ν, h1, h2. Similarly, for 0 < λ,μ1,μ2 < 2m1, from
Equations (5), (15), (16) and (18), we obtain

Emi
0
[
Tcom

] = 2
λ(2mi − λ)

ν − 2
(2mi − λ)2

+ Pmi
0 (Sν ≥ bν)

(
2

μ1(2mi − μ1)
h1 − 2

(2mi − μ1)2

)

+ Pmi
0 (Sν < bν)

(
2

μ2(2mi − μ2)
h2 − 2

(2mi − μ2)2

)
+ c(ν, h1, h2), (20)

where c(ν, h1, h2) goes to zero as all three variables ν, h1 and h2 go to infinity.
In the sequel, we set

E∞[Tcom] = γ , (21)

and then proceed to discuss the asymptotic behaviour of the detection delay of Tcom as γ

goes to infinity.
From Lemma 3.1 and the results (19) and (20), we get the requirement on the tuning

parameters, that is 0 < μi < 2m1. To see this, suppose max (ν, h1, h2) = h1 and P∞(Sν ≥
bν) 	= 0. From (19), we can see that the leading term is of order eh1 and so E∞[Tcom] = γ

translates into h1 = O( ln γ ) by properly choosing the parameters. If we chooseμ2 > 2m1,
then from (18), G1(μ2, h2) = O(eh2(μ2−2m1)/μ2), which may lead to J(Tcom) = O(γ ) and
make the delay far away from the lower bound as γ increases. For this reason, we must
choose 0 < μi < 2m1. For simplicity, we can choose μ1 = μ2 = m1.

4. Asymptotic optimality of Tcom

Our objective is to find an asymptotically optimal stopping time for the detection problem
(P). We will establish asymptotic optimality of third order (see Fellouris and
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Moustakides [7]) for Tcom constructed above. In this section, we continue to consider
the Bernoulli caseN = 2. Recall that first order asymptotic optimality means that the ratio
between the detection delay J(T) and the lower bound LB(γ ) goes to 1 as γ → ∞, while
under second order asymptotic optimality the difference between J(T) and LB(γ ) remains
bounded in the same limit. Finally, the strongest third order asymptotic optimality means
that the difference between J(T) and LB(γ ) goes to zero as γ → ∞.

4.1. Third order asymptotic optimality of Tcom in (P)

We begin by describing the conditions on the parameters in the composite stopping time
Tcom that are required to achieve asymptotic optimality. The motivation is that we use
CRP Sν in the first stage as an indicator to whether there is a change or not. When Sν is
small, it is more likely that there is a change and so we would like the first stage to play an
important role and do not need a long second stage; when Sν is large, it is more likely that
there is no change and so we need a long second stage to detect the change.

To rigorize this intuition, we need the following results under the no-change measure
P∞ and the measure Pmi

0 .
Lemma 4.1: For parameters λ, bν , ν > 0 such that bν/ν is a positive constant, we have

lim
ν→∞P∞(Sν < bν) = 0. (22)

Lemma 4.2: For any parameter λ ∈ (0, 2m1) and bν , ν > 0 such that bν/ν = l is a positive
constant that satisfies

l >
2

λ(2m1 − λ)
, (23)

there exists a positive constant L = L(m1, λ, l) such that

lim
ν→∞ Pm1

τ

(
Sν ≥ bν

∣∣ τ < ρλ
ν

)
e−Lν = 0. (24)

In particular, we have
lim

ν→∞Pm1
0 (Sν ≥ bν)e−Lν = 0. (25)

See Section 7 for the proofs of Lemmas 4.1 and 4.2.
As a remark, the conditional event {τ < ρλ

ν } is used to guarantee that the change
has happened when the CRP begins, so that the whole time interval on which the CRP
is recorded corresponds to the path with drift m1 or m2. This condition disappears
asymptotically since as ν → ∞ we have ρλ

ν → ∞, while by assumption τ is a fixed
constant. Consequently, in the asymptotic regime the condition {τ < ρλ

ν } simply means
that there exists a change in the lifetime of the observation process.

We notice that Lemma 4.2 also gives the behaviour of Pm2
τ (Sν ≥ bν

∣∣ τ < ρλ
ν ) if we

substitutem1 withm2. Thus, Lemmas 4.1 and 4.2 tell us that the value of Sν can distinguish
the two cases under no drift measure P∞ and under the drift measure Pm1

0 or Pm2
0 .

In order to ensure the third order asymptotic optimality of Tcom, we will need to make
appropriate choices of its parameters. From (19) and (21) , it can be seen that at least one
of the thresholds ν, h1, h2 will go to infinity as γ goes to infinity. However, to achieve our
purpose, we make the parameters ν, h1, h2 all go to infinity in the discussion that follows.
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We also choose bν to be linear in ν, which is based on the fact that Emi
0 [Sν] = O(ν) and

E∞[Sν] = O(ν) as ν → ∞ (see Corollary 7.2 in Section 7 ). Moreover, we choose λ to
satisfy

0 < λ < 2m1. (26)

And for simplicity, we choose μ1 = μ2 = m1.
We now proceed to define ν, h2 in terms of h1. In particular, let ν = ν(h1) be a linear

function of h1 such that

ν = p1(m2 − m1)
2

m2
1m

2
2

1
p1

λ(2m1−λ)
+ p2

λ(2m2−λ)

h1 + c (27)

where

c =
∑

i
pi

(2mi−λ)2
+ p2

m2
2
ln m2

2
m2
1

+ p2
(2m2−m1)2

− p2
m2
2∑

i
pi

λ(2mi−λ)

.

It is easy to see that the coefficient of h1 in (27) is less than 1. This is because
(m2 − m1)/m2 < 1 and λ(2m1 − λ) ≤ m2

1.
Then by using λ and ν, we choose bν as a function of h1 such that

l >
2

λ(2m1 − λ)
and let bν = lν. (28)

We also choose the thresholds h1, h2 to satisfy the linear condition

h2 = (2m2 − m1)m1

m2
2

h1. (29)

It is easy to see that (2m2−m1)m1/m2
2 ≤ 1 and so h2 ≤ h1. The value of h1 is computed

from the equation of the false alarm constraint

F(λ, ν) + (1 − P∞(Sν < bν))F(μ1, h1) + P∞(Sν < bν)F(μ2, h2) = γ , (30)

where the left hand side represents the average false alarm in (15), and the expression for
P∞(Sν < bν) is given in Lemma 7.1. Note that the left hand side of (30) is a function of h1
since we specified all of ν, bν , h2 in terms of h1.

From conditions (27) and (29), as γ → ∞, Equation (30) tells us that all ν, h1 and h2
go to infinity.

Condition (27)means that thefirst stagewill have apositive contribution to thedetection
delay. Condition (29) means that when Sν is large, we run a second stage with a large
threshold and so we need to wait more time to announce the change; when Sν is small, we
run the second stagewith a small threshold and soTcom stops soon. The requirement in (28)
comes from Lemmas 4.2 and 4.1. We can easily see that Pm1

0 (Sν ≥ bν) and Pm2
0 (Sν ≥ bν)

both go to zero exponentially, while P∞(Sν < bν) goes to zero as γ → ∞. Thus, condition
(28) enables us to tell whether there is a change or not.

By the previous choices of parameters, we have the following results.
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Lemma 4.3: For any compositeG-stopping timeTcom satisfying (21), withλ,μi ∈ (0, 2m1),
where the parameters ν, bν , h1 and h2 all go to infinity as γ → ∞, and where bν/ν and
h2/h1 are constants while ν/h1 < 1, h2/h1 < 1, we have

h1 = ln γ − ln
2
μ2
1

+ C(γ ). (31)

Here, C(γ ) is a function that C(γ ) → 0 as γ → ∞.
Theorem 4.4: Let R1(γ ) be the family of composite G-stopping times of the form Tcom
defined in (14), such that μ1 = μ2 = m1 and the parameters λ, ν, bν , hi satisfy (26)–(30),
when the mean time to the first false alarm satisfies (21). Then, as γ → ∞, any stopping
time inR1(γ ) is asymptotically optimal of third order to detect the change-point in problem
(P) in the sense that

lim
γ→∞

[
J(Tcom) − LB(γ )

] = 0, (32)

where J(Tcom) is the detection delay defined in (3); LB(γ ) is the lower bound of the detection
delay given in Lemma 2.1.

See Appendix 1 for the proof.
Theorem 4.4 gives an asymptotically optimal stopping time of third order in the

detection problem (P). We provide a powerful stopping time in the detection problem,
such that the difference between the resulting detection delay and the lower bound of the
detection delay is close to zero once the average false alarm is large enough. However, the
theorem does not provide the non-asymptotic guarantees.

4.2. An identification function

In the previous subsection, we choose the parameters in the composite stopping time to
make Tcom be asymptotically optimal of third order in the problem (P). If we additionally
want to identify the post-change distribution, it is possible to construct an identification
function δTcom ∈ GTcom taking values in {m1,m2} to serve the purpose of post-change
identification of the drift.

To this end, we employ the CRP of the second stage Tμ2
h2

Sh2 := S(Z,μ2, h2)

and recall Sν as the CRP of the first stage. The identification function δTcom is defined as
follows

δTcom :=
{
m1 if {Sν ≥ bν} ∪ {Sh2 ≥ bh2 , Sν < bν};
m2 if {Sh2 < bh2 , Sν < bν}.

(33)

for positive constants bν and bh2 .
The idea of the identification function is that we use the values of the CRPs of both

stages together as an indicator to whether the post-change drift is large or small. If we
do not have a strong reason to claim that the post-change drift is m2, then we say that
the post-change drift is m1. More specifically, we consider the cases under the measures
Pmi

τ ( · | τ < ρλ
ν ). In such cases, both Sh2 and Sν are related to the observation path with

a constant drift mi. When Sν is large, we say there is no change based on Lemma 4.1.
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Otherwise, when Sh2 is large, which corresponds to a slow CUSUM reaction in the second
stage, we have an indication of a small post-change drift. Conversely, when Sh2 is small, we
have an indication of a large post-change drift.

We notice that the measure Pmi
0 is a special case in which the change occurs before the

last reset of the first stage CUSUM statistic process. It is easy to see that under both Pmi
0

and Pmi
τ ( · | τ < ρλ

ν ), the observation path has exactly the same drift at the time that the
CRP Sν starts being recorded. This is also true for Sh2 .

We use ρ
μ2
h2 to represent the last reset of the second stage CUSUM statistic process.

Then we have the following results concerning the exponential decay of the conditional
identification errors.
Lemma 4.5: For any parameterμ2 ∈ (0, 2m1), when we choose bh2/h2 = l to be a positive
constant that satisfies

l <
2

μ2(2m1 − μ2)
, (34)

there exists a positive constant L1 = L1(m1,μ2, l) such that

lim
h2→∞

Pm1
τ

(
Sh2 < bh2

∣∣ τ < ρ
μ2
h2

)
e−L1h2 = 0. (35)

Lemma 4.6: For any parameterμ2 ∈ (0, 2m2), when we choose bh2/h2 = l to be a positive
constant that satisfies

l >
2

μ2(2m2 − μ2)
, (36)

there exists a positive constant L2 = L2(m2,μ2, l) such that

lim
h2→∞

Pm2
τ

(
Sh2 ≥ bh2

∣∣ τ < ρ
μ2
h2

)
e−L2h2 = 0. (37)

See Section 7 for the proofs of Lemmas 4.5 and 4.6.
As a remark, the purpose of the condition {τ < ρ

μ2
h2 } is to guarantee that the second-

stage CRP is recorded on the path that has a driftmi. In other words, we consider the case
that the change happens before the last reset of the second-stage CUSUM statistic process.
Thus, Lemmas 4.5 and 4.6 still hold if the condition {τ < ρ

μ2
h2 } is substituted with {τ < ρλ

ν }
since ρλ

ν < ρ
μ2
h2 .

Based on Lemmas 4.5 and 4.6, for simplicity, we choose μ2 = m1 to guarantee the
existence of the solution of the inequalities (34) and (36).

InTheorem4.4,we alreadyhave the conditions on theparametersλ, ν, bν , h1, h2.We still
need to choose parameter bh2 in the identification function δTcom . To satisfy the conditions
in Lemmas 4.5 and 4.6, we choose a constant l such that

2
m1(2m2 − m1)

< l <
2
m2

1
and let bh2 = l · h2. (38)

Proposition 4.7: Let Tcom ∈ R1(γ ) be a composite G-stopping time in Theorem 4.4, and
δTcom be the associated identification function defined in (33), such that μ1 = μ2 = m1 and
the parameters λ, ν, bν , bh2 , hi satisfy (26)–(30) and (38). Then, we obtain
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lim
γ→∞ Pmi

τ

(
δTcom 	= mi

∣∣ τ < ρλ
ν

) = 0 for i = 1, 2, (39)

where ρλ
ν is the last reset of the first-stage CUSUM statistic process in (12).

See Appendix 1 for the proof.
As a remark, when τ is a finite constant, the probability of conditional event in (39)

goes to 1 as γ increases, i.e. Pmi
τ (τ < ρλ

ν ) → 1 as γ → ∞, since the last reset time ρλ
ν also

goes to infinity. Thus, (39) is equivalent to

lim
γ→∞ Pmi

τ

(
δTcom 	= mi

∣∣ τ < ∞) = 0 for i = 1, 2. (40)

Proposition 4.7 gives the performance of the identification function δTcom under the case
that the change happens before the last reset of the first-stage CUSUM statistic process.
It provides a way to make an estimate of the post-change drift, with arbitrarily small
conditional identification errors as γ grows in the case that the change point has happened
before the last reset of the first-stage CUSUM statistic process.

This identification function in fact comes from the construction of the stopping time.
But δTcom may not be the best statistical estimator of the post-change drift alone. Our pri-
mary purpose here is to minimize the detection delay of the change point and
Proposition 4.7 shows that our composite stopping time can provide additional informa-
tion about post-change identification with arbitrarily small conditional errors in special
cases.

4.3. Comparing Tcom with other detection rules

In this subsection,we compare the composite stopping timeTcom with alternative detection
rules for the problem (P).

4.3.1. A randomized composite stopping time
In the definition of the composite stopping time Tcom in (14), instead of using the CRP, we
may consider any event A, such that A is known before the second stage. The complement
set of A is denoted by Ac . By the strong Markov property of Z, the stopping times Tμ1

h1 and
Tμ2
h2 are independent of A.
For example, we may take A = {U ≤ q}, where U is an independent uniform U(0, 1)

random variable and q is a constant. Thus, U is a randomization parameter (a ‘coin toss’)
which determines which of Tμ1

h1 and Tμ2
h2 we use in the second stage. In fact, in such an

example, Tλ
ν is not necessary.

Thus, we can define a randomized composite stopping time Tran as

Tran = 1AT
μ1
h1 + 1AcTμ2

h2 , (41)

where 1A and 1Ac are indicator functions.
To choose its parameters, set μ1 = m1. By giving a requirement on μ2 as

2m1m2

m1 + m2
< μ2 < 2m1 (42)
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and the fact thatm2
2/(2m2m1 − m2

1) ≥ 1, we can define a constant value q that is between
0 and 1:

q :=
1 − (2m1−μ2)m2

2
(2m2−μ2)m2

1

m2
2

(2m2−m1)m1
− (2m1−μ2)m2

2
(2m2−μ2)m2

1

. (43)

Now, we pick the event A to satisfy

P∞(A) = Pm1
0 (A) = Pm2

0 (A) = q. (44)

Let h1, h2 go to infinity as γ → ∞. We take h2 to be a linear function in h1 with a ratio

h2 = (2m1 − μ2)μ2

m2
1

h1 + c (45)

where

c =
∑

i pi
(

2q
(2mi−m1)2

+ 2(1−q)
(2mi−μ2)2

)
+∑i

2pi
m2
i

(
ln m2

i
2 − 1

)
− ln m2

1
2q
∑

i
2pi
m2
i∑

i
2pi(1−q)

(2mi−μ2)μ2

.

It is easy to check that the coefficient is less than 1. So for γ large enough, we have h2 < h1.
Proposition 4.8: Let R3(γ ) be the family of randomized composite stopping times of
the form Tran defined in (41), such that μ1 = m1 and μ2, h1, h2,A satisfy (42)–(45) and
E∞[Tran] = γ . Then, as γ → ∞, any stopping time in R3(γ ) is asymptotically optimal of
third order in problem (P) in the sense that

lim
γ→∞

[
J(Tran) − LB(γ )

] = 0. (46)

Comparing to the result in Theorem 4.7, the randomized stopping time Tran can
not provide the identification function of the post-change drift to satisfy the constraint.
Moreover, although the definition of Tran only involves a single CUSUM alarm, it is not
necessary that Tran has a smaller detection delay than Tcom when they share the same false
alarm constraint. In the construction of Tran we have two stopping times Tμ1

h1 and Tμ2
h2 .

With the same false alarm rate γ , the value of the threshold h1 in Tran is more likely to be
larger than that inTcom (this still depends on the values of other parameters and constants),
which may lead to a longer time to detect the change.

Such a randomized stopping time Tran is in fact different from Tcom. Because when
A = {U ≤ q}, we have Pm1

0 (A) = Pm2
0 (A) = P∞(A). On the other hand, for the CRP S we

have Pm1
0 (S ≥ a) 	= Pm2

0 (S ≥ a) 	= P∞(S ≥ a), which provides a method to identify the
value of post-change drift.

4.3.2. A generalized likelihood ratio stopping time
The λ-CUSUM stopping time with tuning parameter mi is based on the maximum
likelihood ratio statistic process

y(i)
t := max

s≤t
log

dPmi
s

dP∞

∣∣∣Gt = miZt − 1
2
m2

i t − inf
s≤t

(
miZs − 1

2
m2

i s
)

. (47)
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Wemay also consider a stopping time related to the generalized likelihood ratio statistic.
Discussion on the generalized likelihood ratio statistic in the detection problem can be
found in Siegmund and Venkatraman [25].

In this problem, we have the post-change drift to be either m1 or m2, with a null
hypothesis that there is no change. So the generalized likelihood ratio statistic corresponds
to the process of the form

ymax
t := max{y(1)

t , y(2)
t }. (48)

This leads to the stopping time

Tmax
k := inf {t ≥ 0 : ymax

t ≥ k} (49)

for a positive constant k. Since {max{y(1)
t , y(2)

t } > k} = {y(1)
t > k} ∪ {y(2)

t > k}, it is easy to
see that Tmax

k is the minimum of two CUSUM stopping times:

Tmax
k = Tc

1 ∧ Tc
2

where Tc
1 and Tc

2 are the CUSUM stopping times with respect to y(1) and y(2) separately
and with the same threshold k.

For each observation path, such a stopping time is stopped at either Tc
1 or Tc

2. The
minimum stopping time provides a separation on the whole path space. One can show
that Tmax

k is not third-order asymptotically optimal. In particular, if m2 < 2m1, Tmax
k is

not even second-order asymptotically optimal. See Appendix 2 for details.

4.3.3. Amixture of likelihood ratios stopping time
Instead of the statistic (48), we may consider another statistic as the mixture of the
likelihood ratio

ymix
t = p1e

m1Zt− 1
2m

2
1t−inf

s≤t

(
m1Zs− 1

2m
2
1s
)

+ p2e
m2Zt− 1

2m
2
2t−inf

s≤t

(
m2Zs− 1

2m
2
2s
)
.

And define a stopping time

Tmix
d := inf {t ≥ 0 : ymix

t ≥ ed} (50)

for a positive constant d.
The statistic ymix is the linear combination of exponential form of reflected Brownian

motions with different drift and diffusion parameters. Unfortunately, it is hard to represent
the explicit expressions of its expectations under measures Pmi

0 and P∞.
Similar to the generalized likelihood ratio stopping time, we can see that Tmix

d is not
third-order asymptotically optimal in general. In particular, ifm2 < 2m1, Tmix

d is not even
second-order asymptotically optimal. See Appendix 2 for details.

5. Numerical illustration

We present an example to illustrate the idea of the composite stopping time Tcom and
to see its performance. Theorem 4.7 tells the asymptotic behaviour of the stopping time
as the time to first false alarm increases without bound, assuming the conditions on the
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Figure 2. Performance of the composite rule in the case m1 = 2, m2 = 5, p = 0.4. Left: the difference
between detection delay and lower bound; Right: the threshold h1. Both graphs are plotted against λ

with a logarithmic x-axis.

Pm1 Tcom m1

104 108 1012 1016
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Figure 3. Performance of δTcom in the case m1 = 2, m2 = 5, p = 0.4 under measure Pm1
τ . This graph is

plotted against λwith a logarithmic x-axis. The graph of performance of δTcom under measure Pm2
τ has a

similar shape.

parameters such as (26) and (28). Since these conditions only specify acceptable ranges,
there remains scope for further fine-tuning to optimize performance.

In Figures 2 and 3, we consider the case m1 = 2, m2 = 5 and p = 0.4, when
changing the value of γ . To evaluate the stopping time in Theorem 4.7, first we select the
parameter λ. To avoid the situation of stopping too fast, it is important to guarantee that
ν is not too small compared to λ. Thus, we prefer a small value of λ. In this example,
we fix λ = m1/10. Based on the conditions (27) and (29), the thresholds ν and h2 are
linear functions of h1. Next, we need to decide the CRP threshold bν to satisfy (28). In
this example, we choose bν = 4/(2m1λ − λ2)ν. Then, representing h2, ν, bν as functions
of h1, we can solve Equation (30) to get the values of h1 given γ . For computational
convenience, in this example, in fact we choose h1 as simple integers and then γ is
the value that satisfies (30). The parameter bh2 is chosen by equalizing the probabilities
Pm1

τ (Sh2 < bh2 |τ < ρλ
ν ) = Pm2

τ (Sh2 > bh2 |τ < ρλ
ν ).

From Figures 2, 3 and Table 1, we can see that the composite stopping time Tcom in
this example provides good behaviours in both detection and identification. The difference
between the detection delay of Tcom and the lower bound goes to zero, as γ increases and
the identification metrics also quickly shrink as γ increases.
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Table 1. Example choices of parameters in the case m1 = 2, m2 = 5, p = 0.4. Here, we have λ = 0.2,
h2 = 0.64h1. J refers to detection delay J(Tcom); Diff refers to the difference J(Tcom) − LB(γ ); Rat refers
to J(Tcom)/LB(γ ); Err1 refers to Pm1

τ

(
δTcom 	= m1

∣∣ τ < ρλ
ν

)
; Err2 refers to Pm2

τ

(
δTcom 	= m2

∣∣ τ < ρλ
ν

)
.

γ ν bν h1 J LB Diff Rat Err1 Err2

4 × 10 0.34 1.77 6.0 1.34 0.94 0.39 1.417 0.1868 0.1881
9.8 × 102 0.47 2.45 9.0 2.08 1.72 0.35 1.206 0.1043 0.1051
2.8 × 104 0.6 3.13 12.0 2.82 2.56 0.26 1.104 0.0602 0.0607
7.6 × 105 0.72 3.81 15.0 3.57 3.37 0.19 1.058 0.0356 0.0358
1.9 × 107 0.85 4.5 18.0 4.31 4.17 0.14 1.035 0.0214 0.0215
4.3 × 108 0.98 5.18 21.0 5.05 4.94 0.11 1.022 0.0130 0.0130
9.7 × 109 1.11 5.86 24.0 5.8 5.71 0.08 1.014 0.0079 0.0080
2.1 × 1011 1.24 6.55 27.0 6.54 6.48 0.06 1.010 0.0049 0.0049
4.5 × 1012 1.37 7.23 30.0 7.28 7.24 0.05 1.007 0.0030 0.0030
9.4 × 1013 1.5 7.91 33.0 8.03 7.99 0.04 1.005 0.0019 0.0019
1.9 × 1015 1.63 8.59 36.0 8.77 8.74 0.03 1.003 0.0012 0.0012
4.0 × 1016 1.76 9.28 39.0 9.51 9.49 0.02 1.002 0.0007 0.0007
8.2 × 1017 1.89 9.96 42.0 10.26 10.24 0.02 1.002 0.0005 0.0005
1.7 × 1019 2.02 10.64 45.0 11.0 10.99 0.01 1.001 0.0003 0.0003
3.4 × 1020 2.15 11.33 48.0 11.74 11.74 0.01 1.001 0.0002 0.0002

6. Generalizing post-change drift uncertainty

The idea of the composite stopping time in Theorem 4.4 and Proposition 4.7 can be
extended to the situation where the post-change drift m takes on more than two values.
For simplicity, we discuss in this section the case N = 3 so that m is a random variable
taking three values 0 < m1 < m2 < m3.

The idea of quickest detection for suchm is to construct a composite stopping timeT(3)
com

with (up to) 3 stages. We combine two composite stopping times via a binary decision tree
and choose the parameters in a backward fashion. The separation in the last (second)
composite stopping time is used to distinguish the cases {m = m2} and {m = m3} when
there is a change. The separation in the second-to-last (first) composite stopping time
is used to distinguish the cases {m = m1} and {m > m1} when there is a change. The
identification is done using an appropriate CRP criterion as before. In fact, we design the
first node in the tree to help balance the false alarm rate, and ensure its frequency will go
to zero when there is a change.

The following diagram illustrates the construction of the stopping time T(3)
com. It should

be clear that this approach can be extended further to any finite N .

Tλ1
ν1

Tλ2
ν2

Tμ3
h3

S2 < b2

Tμ2
h2S2 ≥ b2

S1 < b1

Tμ1
h1S1 ≥ b1

More precisely, we first employ a G-stopping time Tλ1
ν1 := T(Z, λ1, ν1) of the CUSUM

form in (8) with parameters 0 < λ1 < 2m1 and ν1 > 0 and the observation path
Z := {Zt}t≥0. After the first stage, we have the CRP associated with Tλ1

ν1 as defined in
(11) and the last reset time defined in (10), that are denoted by
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S1 := S(Z, λ1, ν1) and ρλ1
ν1

:= ρ(Z, λ1, ν1). (51)

We choose a threshold b1 > 0 to distinguish the measures P∞ and Pm1
0 as we used in

N = 2 case.
On the event {S1 ≥ b1}, we employ

Tμ1
h1 := T

(
θTλ1

ν1
(Z),μ1, h1

)
,

with the parameter h1 > 0 and which helps to do one more stage detection based on the
information that the first stage CUSUM statistic process increases slowly.

If {S1 < b1}, assuming that there is a change, we continue to another stage to test
between {m < m1} and {m ≥ m1} via

Tλ2
ν2

:= T
(

θTλ1
ν1

(Z), λ2, ν2
)

with parameters 0 < λ2 < 2m2 and ν2 > 0. This stage yields another CRP S2 := Sλ2
ν2 . We

choose a threshold b2 > 0 to make a condition on S2. In the case that {S2 ≥ b2}, we employ

Tμ2
h2 := T

(
θTλ1

ν1 +Tλ2
ν2

(Z),μ2, h2
)

;

alternatively if {S2 < b2}, we employ

Tμ3
h3 := T

(
θTλ1

ν1 +Tλ2
ν2

(Z),μ3, h3
)

.

For the same reason as that of Tcom, we require 0 < μi < 2m1 for i = 1, 2, 3. We can
choose μ1 = μ2 = μ3 for convenience.

Overall, the composite stopping time T(3)
com is

T(3)
com :=

⎧⎪⎨
⎪⎩
Tλ1

ν1 + Tμ1
h1 on B1 := {S1 ≥ b1};

Tλ1
ν1 + Tλ2

ν2 + Tμ2
h2 on B2 := {S1 < b1, S2 ≥ b2};

Tλ1
ν1 + Tλ2

ν2 + Tμ3
h3 on B3 := {S1 < b1, S2 < b2}.

(52)

It is easy to see that three stages {Tλ1
ν1 , S1}, {Tμ1

h1 ,T
λ2
ν2 , S2} and {Tμ2

h2 ,T
μ3
h3 } are independent

of each other. Moreover, the above construction also gives an identification stopping time
according to

δ(3) := mi1Ai ∈ GT(3)
com

, (53)

based on the partition generated by the Ai’s for i = 1, 2, 3 as follows



672 H. YANG ET AL.

⎧⎪⎨
⎪⎩

A1 = {S1 ≥ b1} ∪ {S1 < b1, S2 ≥ b2, Sh2 ≥ bh2};
A2 = {S1 < b1, S2 ≥ b2, Sh2 < bh2} ∪ {S1 < b1, S2 < b2, Sh3 ≥ bh3};
A3 = {S1 < b1, S2 < b2, Sh3 < bh3},

(54)

where bh2 and bh3 are positive constant parameters.
To define the stopping time T(3)

com we need to specify the parameters. For simplicity, we
always choose μ1 = μ2 = μ3 = m1. And we choose λ1 = λ2 := λ to satisfy

0 < λ < 2m1. (55)

We prefer to choose the parameters ν1, ν2, h1, h2, h3, b1, b2, bh2 , bh3 such that they
all go to infinity as γ → ∞. The generalized construction comes from the case of two
drift-values, with very similar parameter requirements.

Let ν1 = ν2 := ν be functions of h1 such that

ν = c1h1 + c2 (56)

where
c1 := p1(m2 − m1)

2

m2
1m

2
2

1∑
i

2pi
λ(2mi−λ)

and

c2 :=
∑

i
2pi

(2mi−λ)2
+∑i

pi
(2mi−m1)2

+∑i
pi
m2
i

(
ln m2

i
2 − 1

)
−∑i

pi
m2
i
ln m2

1
2∑

i
2pi

λ(2mi−λ)

.

Then we choose constants li for i = 1, 2 such that

l1 >
2

λ(2m1 − λ)
and

2
λ(2m3 − λ)

< l2 <
2

λ(2m2 − λ)
(57)

and choose bi such that
b1 = l1ν and b2 = l2ν. (58)

Similarly, for j = 2, 3 we choose

bhj = ljhj and
2

m1(2mj − m1)
< lj <

2
m1(2mj−1 − m1)

. (59)

For the thresholds h2, h3, we require them to be linear in h1 as

hi
h1

= (2mi − m1)m1

m2
i

≤ 1 for i = 2, 3. (60)

With the above choices, all parameters are either fixed or expressed in terms of h1. The
latter can be then determined from the false alarm constraint

E∞
[
T(3)
com

]
= γ. (61)
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Theorem 6.1: Let R(3)(γ ) be the family of composite G-stopping times T(3)
com defined in

(52) such that μ1 = μ2 = μ3 = m1, and λi, νi, bi, hi, bhj satisfy (55)–(61) for i = 1, 2, 3
and j = 2, 3. Then, as γ → ∞, any stopping time in R(3)(γ ) is asymptotically optimal of
third order in the detection problem (P) in the sense that

lim
γ→∞

[
J(T(3)

com) − LB(γ )
]

= 0 (62)

where LB(γ ) is defined in Lemma 2.1; J(T(3)
com) is defined in (3).

Proposition 6.2: Let T(3)
com ∈ R3(γ ) be a composite G-stopping time in Theorem 6.1, and

δ(3) be the associated identification function defined in (53), such thatμ1 = μ2 = μ3 = m1,
and λi, νi, bi, hi, bhj satisfy (55)–(61) for i = 1, 2, 3 and j = 2, 3. Then, we obtain

lim
γ→∞ Pmi

τ

(
δ(3) 	= mi

∣∣ τ < ρλ1
ν1

)
= 0 for i = 1, 2, 3, (63)

where ρ
λ1
ν1 is the last reset of the first stage CUSUM statistic process in (51).

See Appendix for the proof.

7. Properties of CRP

The distribution of the CRP defined in (11) can be derived by specializing the results in
Zhang and Hadjiliadis [28], where S	

K is called the speed of market crash. The following
lemma presents the density function of a CRP where the driver process {ξt}t≥0 is a
Brownian motion with driftM.
Lemma 7.1: For 	 	= 2M, the CRP S	

K , associated with a CUSUM stopping time T	
K with

tuning parameter 	 and threshold K, has the probability density function

fS	
K
(y) =

√
2
π

sinh (δK)

δ	3y5/2
e−

	2δ2
2 y

∞∑
n=0

[
(2n + 1)2K2 − 	2y

]
e
− (2n+1)2K2

2	2y , (64)

for y ∈ R+, and where
δ := 2M − 	

2	
. (65)

Proof of Lemma 7.1: In the definition (8), we can rewrite the CUSUM stopping time as

T	
K = inf

{
t ≥ 0 : sup

s≤t

(
μs − σWs

)− (μt − σWt
) ≥ K

}
,

where μ = (	 − 2M)	/2 and σ = 	 > 0.
From Section 4.1 in Zhang and Hadjiliadis [28], we have the Laplace transform of the

CRP as
EQ
[
e−aS	

K
]

= Ca
δ,σ
δ

sinh (δK)

sinh (Ca
δ,σK)

, (66)

where δ = − μ

σ 2 and Ca
δ,σ =

√
δ2 + 2a

σ 2 for a > 0. (67)
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Our objective is to take the inverse Laplace transform of Equation (66) to obtain the
probability density function of S	

K ,

fS	
K
(y) = L−1

a

[
EQ
[
e−aS	

K
]]

(y) = sinh (δK)

δ
L−1
a

[
Ca

δ,σ
sinh (Ca

δ,σK)

]
(y). (68)

Denote

z := σ 2

2K2 y and η := K2δ2 + 2K2

σ 2 a = (Ca
δ,σK)2. (69)

By changing variables, we obtain

L−1
a

[
Ca

δ,σ
sinh (Ca

δ,σK)

]
(y) = σ 2

2K3 e
− δ2σ2

2 yL−1
η

[ √
η

sinh (
√

η)

] (
z
)
. (70)

From the series expansion

1
sinh (x)

= 2e−x

1 − e−2x = 2e−x
∞∑
n=0

e−2nx , (71)

we have

L−1
η

[ √
η

sinh (
√

η)

]
(z) = 2

∞∑
n=0

L−1
η

[√
ηe−(2n+1)√η

]
(z). (72)

Then by using formula 3 of Appendix 3 of Borodin and Salminen [4], we obtain

L−1
η

[√
ηe−(2n+1)√η

]
(z) = 1√

πz5/2

(
(2n + 1)2

4
− 1

2
z
)
e−

(2n+1)2
4z . (73)

Combining (68), (70), (72) and (73), we obtain (64). �
Corollary 7.2: The expected value of the CRP S	

K is

E[S	
K ] = 4

(2M − 	)2

[
coth

(
2M − 	

2	
K
)
2M − 	

2	
K − 1

]
, (74)

and thus, we obtain

lim
K→∞

E[S	
K ]

K
=
∣∣∣∣ 2
	(2M − 	)

∣∣∣∣ . (75)

The expression (74) follows by differentiating Equation (66) with respect to a and then
letting a = 0.
Proof of Lemma 4.1: From the density function (64), for Sν := S(Z, λ, ν), we can easily
get

P∞(Sν < bν) = 2
√
2√

π

sinh (ν/2)
λ3

∫ bν

0
y−5/2e−

1
8λ2yK(y)dy, (76)

where

K(y) :=
∞∑
n=0

[
(2n + 1)2ν2 − λ2y

]
e
− (2n+1)2ν2

2λ2y . (77)
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For large enough ν, on the interval y ∈ [0, bν], we can obtain

K(y) ≤
∞∑
n=0

(2n + 1)2ν2e
− (2n+1)2ν2

2λ2y ≤ ν2
∫ ∞

1
xe

− x
2λ2y

ν2

dx = Cye
− 1

2λ2y
ν2

.

Denote

B(y) := y− 3
2 e−

1
8λ2ye

− ν2
2λ2y .

By using differentiation, as ν → ∞, we obtain that the maximum of B(y) happens at the
position ymax = ( − 6 + 2

√
ν2 + 9)/λ2 = 2ν/λ2 + Oν(1). And B(y) is increasing for

y < ymax. Thus, for large enough ν (76) leads to

P∞(S < b) ≤ Cbν sinh (ν/2)B(ymax) = Cbνν
− 3

2 e
− (λ2ymax−2ν)2

8λ2ymax ,

where, we use C to represent a generic constant. Since bν is linear in ν, we can see that
P∞(Sν < bν) ≤ O(ν−1/2) as ν → ∞, which gives (22). �
Proof of Lemma 4.5: In this proof for simplicity we denote S := Sh2 = S(Z,μ2, h2),
b := bh2 , μ = μ2 and h := h2. Under both Pm1

0 and Pm1
τ ( · |τ < ρ

μ2
h2 ), the process

{Zt}ρμ2
h2

≤t≤Tμ2
h2

is a Brownian motion with drift m1. From (66), we obtain the Laplace
transform of S

Em1
τ

[
e−aS ∣∣ τ < ρ

μ2
h2

]
= Ca

δ1,μ

δ1

sinh (δ1h)
sinh (Ca

δ1,μh)
, for a > 0 (78)

where

δ1 := 2m1 − μ

2μ
and Ca

δ1,μ :=
√

δ21 + 2a
μ2 . (79)

We have δ1 > 0 when 0 < μ < 2m1. From Chebyshev’s inequality, as h → ∞ we know
that, for any a > 0,

Pm1
τ (S < b

∣∣ τ < ρ
μ2
h2 ) ≤ eabEm1

τ

[
e−aS ∣∣ τ < ρ

μ2
h2

]
= O(e−r1(a)h),

where

r1(a) = a

[
4

μ(2m1 − μ) + μ
√

(2m1 − μ)2 + 8a
− b

h

]
. (80)

To guarantee that supa≥0 r1(a) > 0, we require b/h ≤ 2/(μ(2m1 − μ)), i.e. (34). This
is because that the term inside the square brackets in (80) is decreasing in a.

Moreover, fixing b, h,μ, the exponential rate constant in (35) is L1 = r1(a∗) where
a∗ = arg supa≥0 r1(a). By differentiation, we can find that the maximum of r1(a) happens
at

a∗ = h2

2μb2
− 1

8
(2m1 − μ)2. (81)

Then



676 H. YANG ET AL.

L1 = r1(a∗) =
(

4
μ(2m1 − μ) + 2h/b

− b
h

)(
h2

2μb2
− 1

8
(2m1 − μ)2

)
> 0.

In particular, we obtain (35). �
Proof of Lemmas 4.2 and 4.6: We only need to show Lemma 4.2. Lemma 4.6 follows
immediately by substituting the group of parameters {λ, ν,m1} with {μ2, h2,m2}. For
simplicity, we denote S := Sν , b := bν .

Under Pm1
τ ( · ∣∣ τ < ρλ

ν ), the process {Zt}ρλ
ν ≤t≤Tλ

ν
is a Brownian motion with drift m1.

From (66), we obtain the moment generating function of S as

Em1
τ

[
eθS
∣∣ τ < ρλ

ν

] = C−θ
δ2,λ

δ2

sinh (δ2ν)

sinh (C−θ
δ2,λν)

, (82)

with radius of convergence 0 < θ < 1
2δ

2
2λ

2 and

δ2 = 2m1 − λ

2λ
and C−θ

δ2,λ =
√

δ22 − 2θ
λ2

. (83)

We have δ2 > 0 when 0 < λ < 2m1. From Chebyshev’s inequality, as ν → ∞ we can
get

Pm1
τ (S ≥ b

∣∣ τ < ρλ
ν ) ≤ Em1

τ

[
eθS
∣∣ τ < ρλ

ν

]
eθb

= O(e−r2(θ)ν),

where

r2(θ) = θ

[
b
ν

− 4

λ(2m1 − λ) + λ
√

(2m1 − λ)2 − 8θ

]
. (84)

To guarantee that limθ→0+ r2(θ) > 0, we require b/ν ≥ 2/(λ(2m1 − λ)), i.e. (23). Fixing
b, ν, λ and by differentiation, we see that θ∗ = arg supθ∈[0,δ22λ2/2] r2(θ) satisfies

θ∗ = 1
8
(2m1 − λ)2 − ν2

2λb2
. (85)

It is easy to check that 0 < θ∗ < δ22λ
2/2, and

L2 = r2(θ∗) =
(
b
ν

− 4
λ(2m1 − λ) + 2ν/b

)(
1
8
(2m1 − λ)2 − ν2

2λb2

)
> 0.

In particular, we obtain (25). �

8. Conclusion

In this paper, we address the Wiener disorder problem with post-change drift uncer-
tainty free of distributional assumptions regarding the disorder time. We model the
uncertainty in the drift with a Bernoulli distribution thus giving rise to a blend between
Bayesian and min–max frameworks, which naturally arise in multifarious applications
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(see, e.g. [21]). To address this problem, we design a novel family of composite stopping
times that are seen to enjoy third-order asymptotic optimality. Among the asymptotically
optimal results in change-point detection problems, our proposed rule is able to achieve
the third-order asymptotic optimality, which is the strongest asymptotic optimality to date
in any model considering post-change uncertainty in this setup. A remarkable property
of such a composite rule is that it can asymptotically distinguish the different values of
post-change drift with an adequately controlled asymptotic error. This is achieved by
introducing multiple CUSUM-based steps in our composite rule allowing us to record an
additional relevant statistic, namely the CRP. The CRP thus extends the role of CUSUM
algorithm from a stopping time to an analytic procedure which can produce other finer
strategies with inferential power over the post-change drift. This finding constitutes a novel
step towards rigorous treatment of models with random post-change drifts, such as the
case that the post-change drift is a continuous function of time.
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Appendix 1.
We give the proofs of lemmas and theorems in this appendix. Recall the definition of the big-O
and small-o notation: for any two real-valued functions a(x) and b(x) 	= 0 defined on R, we write
a(x) = Ox(b(x)) if there exists C > 0 and x0 such that

0 <
∣∣∣∣a(x)b(x)

∣∣∣∣ ≤ C for all x ≥ x0,

and a(x) = ox(b(x)), if

lim
x→∞

∣∣∣∣a(x)b(x)

∣∣∣∣ = 0.

Proof of Lemma 2.1: For i = 1, . . . ,N , the conditional detection delay Ji(T) is that of Lorden’s
criterion[14], and it is known that (see Shiryaev [24] for example), for any T ∈ T1(γ )

Ji(T) ≥ 2
m2

i
g
(
f −1
(
m2

i
2

γ

))
,
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where the right hand side is the detection delay of a CUSUM stopping time with tuning parameter
mi and average false alarm γ , which leads to (4).

To show the asymptotic behaviour, from (5), we can see f (x) = ex +Ox(x) and g(x) = x − 1+
ox(1) for x > 0 as x → ∞. Thus, as γ → ∞,

g
(
f −1
(
m2

i γ

2

))
= ln γ + ln

m2
i
2

− 1 + oγ (1)

for i = 1, . . . ,N . Then, we obtain (6) and (7). �
Proof of Lemma 3.1: From (14), the expectation of Tcom under any measure P is

E[Tcom] = E[Tλ
ν ] + E[Tμ1

h1 ]P(Sν ≥ bν) + E[Tμ2
h2 ]P(Sν < bν), (A1)

where the independence of Sν with {Tμ1
h1 ,T

μ2
h2 } is used in the second and third terms on the right

hand side respectively. The expectations of CUSUM stopping time T	
ϒ := T({Zt}t≥0,	,ϒ) defined

in (8) are given by (see Poor and Hadjiliadis [22] for example)

E∞[T	
ϒ ] = 2

	2 f (ϒ) ≡ F(	,ϒ). (A2)

Emi
0 [T	

ϒ ] = 2
(2mi − 	)2

g
(
2mi − 	

	
ϒ

)
≡ Gi(	,ϒ).

By plugging in two pairs of parameters (λ, ν) and (μi , hi) separately into (A2), we obtain
(15). �
Proof of Lemma 4.3: From (15), we have

E∞
[
Tcom

]
eh1

= F(λ, ν)

eh1
+ P∞(Sν ≥ bν)

F(μ1, h1)
eh1

+ P∞(Sν < bν)
F(μ2, h2)

eh1
. (A3)

Due to (18) and ν/h1 < 1, the first term on the right hand side of (A3) goes to 0 as γ → ∞.
From Lemma 4.1 and the choice of ν, we have P∞(Sν ≥ bν) → 1 as γ → ∞. Condition h2/h1 < 1
and (18) lead to the third term on the right hand side vanishing asymptotically. Thus, we obtain

lim
γ→∞

E∞[Tcom]
eh1

= lim
γ→∞ P∞(Sν ≥ bν) lim

γ→∞
F(μ1, h1)

eh1
= 2

μ2
1
. (A4)

Taking logarithms in (A4), and substituting for E∞[Tcom] from E∞[Tcom] = γ , we obtain

lim
γ→∞

(
ln γ − h1 − ln

2
μ2
1

)
= 0.

�
Proof of Theorem 4.4: By substituting μ1 = μ2 = m1 in Equation (20), as γ → ∞, we obtain

Em1
0
[
Tcom

] = 2
λ(2m1 − λ)

ν − 2
(2m1 − λ)2

− 2
m2

1
+ Pm1

0 (Sν ≥ bν)
2
m2

1
h1

+ Pm1
0 (Sν < bν)

2
m2

1
h2 + oγ (1).

From Lemma 4.2 and condition (28), we can see that Pm1
0 (Sν ≥ bν) goes to zero exponentially as

γ → ∞. So we have Pm1
0 (Sν ≥ bν)ν goes to zero as γ → ∞ too. From (27), ν is linear in h1. Thus,

Pm1
0 (Sν ≥ bν)h1 goes to zero as γ → ∞. Therefore as γ → ∞, we obtain



680 H. YANG ET AL.

Em1
0
[
Tcom

] = 2
λ(2m1 − λ)

ν − 2
(2m1 − λ)2

− 2
m2

1
+ 2

m2
1
h2 + oγ (1). (A5)

Similarly, applying Lemma 4.2 again and substituting m1 with m2, we can deduce that
Pm2
0 (S ≥ b)h1 goes to zero as γ → ∞. Thus, as γ → ∞, Equation (20) implies

Em2
0
[
Tcom

] = 2
λ(2m2 − λ)

ν − 2
(2m2 − λ)2

− 2
(2m2 − m1)2

+ 2
m1(2m2 − m1)

h2

+ oγ (1). (A6)

From condition (29), Lemma 3.1 and Equation (17), as γ → ∞, the detection delay of Tcom
becomes

J
(
Tcom

) =
(

2p1
λ(2m1 − λ)

+ 2p2
λ(2m2 − λ)

)
ν +

(
2p1m1(2m2 − m1)

m2
1m

2
2

+ 2p2
m2

2

)
h1

− 2p1
(2m1 − λ)2

− 2p2
(2m2 − λ)2

− 2p1
m2

1
− 2p2

(2m2 − m1)2
+ oγ (1).

From condition (27), ν is a linear function of h1. And from Lemma 4.3, as γ → ∞, we have

h1 = ln γ + ln
m2

1
2

+ oγ (1).

Therefore it follows that as γ → ∞

J
(
Tcom

) =
(
2p1
m2

1
+ 2p2

m2
2

)
ln γ − 2p1

m2
1

− 2p2
m2

2
+ 2p1

m2
1
ln

m2
1
2

+ 2p2
m2

2
ln

m2
2
2

+ oγ (1). (A7)

Comparing (A7) with Lemma 2.1, we obtain (32). �
Proof of Proposition 4.7: Conditional on {τ < ρλ

ν }, the observation path segment {Zt}t≥ρλ
ν
is the

Brownian motion with post-change drift m. So both Sν and Sh2 are CRPs that are recorded on the
path of the observation process with driftm.

Using the independence of the two stages in the composite stopping time (14), we obtain

Pm1
τ (δTcom 	= m1|τ < ρλ

ν ) = Pm1
τ (Sh2 < bh2 |τ < ρλ

ν )Pm1
τ (Sν < bν |τ < ρλ

ν ).

From the discussion about the choice of the parameters preceding Theorem 4.4, it follows that
both ν → ∞ and h2 → ∞ as γ → ∞.

From condition (38) and μ2 = m1, we can apply Lemma 4.5 to get that Pm1
τ (Sh2 < bh2 |τ <

ρλ
ν ) → 0 as γ → ∞. So we obtain Pm1

τ (δTcom 	= m1|τ < ρλ
ν ) → 0 as γ → ∞.

Similarly, from (33), we have

Pm2
τ (δTcom 	= m2|τ < ρλ

ν ) = Pm2
τ (Sh2 ≥ bh2 |τ < ρλ

ν )Pm2
τ (Sν < bν |τ < ρλ

ν )

+ Pm2
τ (Sν ≥ bν |τ < ρλ

ν ).

Since condition (28) provides

bν

ν
>

2
λ(2m1 − λ)

≥ 2
λ(2m2 − λ)

,

Lemma 4.2 leads to Pm2
τ (Sν ≥ bν |τ < ρλ

ν ) → 0 as γ → ∞. From (38) and Lemma 4.6, we can see
Pm2

τ (Sh2 ≥ bh2 |τ < ρλ
ν ) → 0 as γ → ∞. It follows that Pm2

τ (δTcom 	= m2|τ < ρλ
ν ) → 0 as γ → ∞.

Thus, we obtain (39). �
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Proof of Proposition 4.8: To define Tran in (41), we replace the event {Sν ≥ bν} in the definition
of Tcom (14) by using a general event A which is independent of the second stage. Using the similar
steps as those used in the computation of the detection delay ofTcom in Lemma 3.1, wewill obtain the
detection delay of Tran in what follows. Under Pm1

0 , from condition (45) and μ1 = m1, as γ → ∞,
we obtain

Em1
0 [Tran] = 2

m2
1
h1 − 2q

m2
1

− 2(1 − q)
(2m1 − μ2)2

+ 2(1 − q)c
(2m1 − μ2)μ2

+ oγ (1).

Under Pm2
0 , as γ → ∞, we have

Em2
0 [Tran] = 2

m2
2
h1 − 2q

(2m2 − m1)2
− 2(1 − q)

(2m2 − μ2)2
+ 2(1 − q)c

(2m2 − μ2)μ2
+ oγ (1).

Therefore, using the independence of A and the second stage, we obtain the detection delay of
Tran as

J(Tran) = p1Em1
0 [Tran] + p2Em2

0 [Tran]. (A8)

Moreover, using similar steps as those used in the proof of Lemma 4.3 and (44), as γ → ∞,
we obtain

h1 = ln γ − ln
2q
μ2
1

+ oγ (1). (A9)

Thus, from (A8), (A9) and the condition (45), as γ → ∞, we obtain

J(Tran) =
(
2p1
m2

1
+ 2p2

m2
2

)
ln γ + 2p1

m2
1

(
ln

m2
1
2

− 1

)
+ 2p2

m2
2

(
ln

m2
2
2

− 1

)
+ oγ (1).

Comparing the above equation with Lemma 2.1 yields (46). �
Proof of Theorem 6.1 and Proposition 6.2: Wewill develop the proof in the following three steps:

(1) We first compute the asymptotic behaviour of h1 as γ → ∞. The average time to false alarm
gives

E∞[T(3)
com]

eh1
= F(λ1, ν1)

eh1
+ P∞(Bc1)

F(λ2, ν2)
eh1

+
3∑

i=1

P∞(Bi)
F(m1, hi)

eh1
. (A10)

From Lemma 4.1, we have P∞(Bc1) → 0, P∞(B2) → 0 and P∞(B3) → 0 as γ → ∞. From
(56) and (60), we have all terms in (A10) vanishing except the one containing F(m1, h1) as
γ → ∞. Thus, from (18) and Lemma 4.1, we have

lim
γ→∞

E∞[T(3)
com]

eh1
= lim

γ→∞
F(m1, h1)

eh1
lim

γ→∞ P∞(B1) = 2
m2

1
.

Using the same argument as in the proof of Lemma 4.3, we obtain (31).
(2) We consider the asymptotic behaviour of the identification function δ(3) in (53) as γ → ∞.

From Lemma s4.2, 4.5, 4.6, condition (57) and condition (59), we can see that

lim
γ→∞ Pmi

τ (Ai|τ < ρλ1
ν1

) = 1 and lim
γ→∞ Pmi

τ (Aj|τ < ρλ1
ν1

) = 0 for i 	= j.

Therefore, the conditional identification errors behaviour in (63) follows. This proves Propo-
sition 6.2. We now proceed to the last step required to establish Theorem 6.1.
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(3) We consider the asymptotic behaviour of the detection delay of T(3)
com as γ → ∞. From

Equation (16) and the expectations of the CUSUM stopping time in (A2), we obtain

Emi
0 [T(3)

com] = Gi(λ1, ν1) + Pmi
0 (Bc1)Gi(λ2, ν2) +

∑
j

Pmi
0 (Bj)Gi(μj , hj). (A11)

We choose the parameters λ1 = λ2 = λ, ν1 = ν2 = ν and μi = m1 for i = 1, 2, 3.
From conditions (57) and (58), Lemmas 4.2, 4.5 and 4.6, it is easy to see that as γ → ∞,
Pmi
0 (B1) → 0 for i = 1, 2, 3; Pm1

0 (B2) → 1, Pm2
0 (B2) → 1, Pm3

0 (B2) → 0; Pm1
0 (B3) → 0,

Pm2
0 (B3) → 0, Pm3

0 (B2) → 1. Thus, as γ → ∞, we obtain

Em1
0 [T(3)

com] =
(

4
λ(2m1 − λ)

ν − 4
(2m1 − λ)2

)
+ 2

m2
1
h2 − 2

m2
1

+ oγ (1).

And for i = 2, 3, as γ → ∞, we obtain

Emi
0 [T(3)

com] =
(

4
λ(2mi − λ)

ν − 4
(2mi − λ)2

)
+ 2

m1(2mi − m1)
hi − 2

(2mi − m1)2

+ oγ (1).

From condition (60) and the choice of ν in (56), as γ → ∞, we obtain

J(T(3)
com) =

3∑
i=1

2pi
m2

i
ln γ +

3∑
i=1

2pi
m2

i

(
ln

m2
i
2

− 1
)

+ oγ (1).

Thus, from the above equation and Lemma 2.1, we obtain (62). �

Appendix 2.
In this appendix, we discuss the behaviours of the generalized likelihood ratio stopping time and the
mixture likelihood ratio stopping time mentioned in Section 4.3.

B.1. A generalized likelihood ratio stopping time

For the generalized likelihood stopping time Tmax
k = Tc

1 ∧ Tc
2 defined in (49), to compute the

expectation of Tmax
k under Pm1

0 , we consider

{y(1)
t > k} =

{
Wt > inf

s≤t

(
Ws + m1

2
s
)

+ k
m1

− m1

2
t
}

{y(2)
t > k} =

{
Wt > inf

s≤t

(
Ws +

(
m1 − m2

2

)
s
)

+ k
m2

−
(
m1 − m2

2

)
t
}

. (B12)

If m2 < 2m1, under Pm1
0 , both of two process y(1) and y(2) have positive drifts. It is easy to see

that

k
m1

− m1

2
t >

k
m2

−
(
m1 − m2

2

)
t when t < tk := 2k

m1m2
,

and inf
s≤t

(
Ws + m1

2
s
)
> inf

s≤t

(
Ws +

(
m1 − m2

2

)
s
)

.

Then from the right hand sides of (B12), we get Tc
2 < Tc

1 when t < tk under P
m1
0 , which leads to

Em1
0 [Tmax

k ] = Em1
0 [Tc

21{t<tk}] + Em1
0 [Tmax

k 1{t≥tk}]. (B13)
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From Tmax
k < min{Tc

1,T
c
2}, the second term in (B13) has an upper bound

Em1
0 [Tmax

k 1{t≥tk}] ≤ min
i

(∫ ∞

tk
tf m1
i (t) dt

)
.

where f m1
i (t) is the density of Tc

i under Pm1
0 for i = 1, 2. An explicit expression of the density

function of Tc
i is given in Domine [6], which gives

f m1
i (t) = eβ1ik−

1
2β2

1im
2
i t
m2

i
k2

∞∑
n=1

θ2n + β2
1ik

2

θ2n + β2
1ik2 + β1ik

θn sin θne
− 1

2k2
θ2nm2

i t ,

where β1i = (2m1 −mi)/(2mi) and θn are the positive eigenvalues that satisfy the equation tan θ =
−θ/(β1ik). Since tk = 2k/(m1m2) is linear in k, by basic computation, we can see that as k → ∞,
Em1
0 [Tmax

k 1{t≥tk}] ≤ Ok(k−1e−L(m1,m2)k), where L(m1,m2) > 0 is a constant. So as k → ∞, when
m2 < 2m1 we obtain

Em1
0 [Tmax

k ] = Em1
0 [Tc

2] + ok(1). (B14)

If m2 > 2m1, under Pm1
0 , the drift of y(1) is positive and the drift of y(2) is negative. Then it can

be shown that (see Hadjiliadis [9] for example)

Em1
0 [Tc

1] ≤ Em1
0 [Tmax

k ] + Em1
0 [Tc

1]Pm1
0 (Tc

2 < Tc
1)

Em1
0 [Tc

2] ≤ Em1
0 [Tmax

k ] + Em1
0 [Tc

2]Pm1
0 (Tc

1 < Tc
2),

and thus, (
Em1
0 [Tc

1]
)−1 ≤ (Em1

0 [Tmax
k ])−1 ≤ (Em1

0 [Tc
1]
)−1 + (Em1

0 [Tc
2]
)−1

. (B15)

From the expectations of CUSUM in (A2), we can see that as k → ∞, Em1
0 [Tc

2] goes to infinity
exponentially in k and Em1

0 [Tc
1] goes to infinity linear in k. So as k → ∞, (B15) leads to

Em1
0 [Tmax

k ] = Em1
0 [Tc

1] + ok(1). (B16)

On the other hand, to compute the expectation of Tmax
k under Pm2

0 , we have

{y(1)
t > k} =

{(
m2 − m1

2

)
t + Wt − inf

s≤t

(
Ws +

(
m2 − m1

2

)
s
)
>

k
m1

}

{y(2)
t > k} =

{
m2

2
t + Wt − inf

s≤t

(
Ws + m2

2
s
)
>

k
m2

}
.

Since m2 − m1/2 > 0, by using the similar arguments to those used to show (B14), as k → ∞,
we obtain

Em2
0 [Tmax

k ] = Em2
0 [Tc

2] + ok(1). (B17)

Also under P∞, we have

{y(1)
t > k} =

{(
−m1

2

)
t + Wt − inf

s≤t

(
Ws +

(
−m1

2

)
s
)
>

k
m1

}

{y(2)
t > k} =

{(
−m2

2

)
t + Wt − inf

s≤t

(
Ws +

(
−m2

2

)
s
)
>

k
m2

}
.

A similar argument shows that, as k → ∞,

E∞[Tmax
k ] = E∞[Tc

2] + ok(1). (B18)
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As a combination of previous results, ifm2 < 2m1, from (B14), (B17) and (B18), we can see that
the performance of Tmax

k is asymptotically the same as the performance of Tc
2. If E∞[Tmax

k ] = γ ,
from (B18), we can obtain that ( ln γ )/k → 1 as γ → ∞. Then from the expectation of CUSUM in
(A2), we can see that

lim
γ→∞

J(Tc
2)

ln γ
= 2p1

(2m1 − m2)m2
+ 2p2

m2
2
.

Thus, Tmax
k is not second order asymptotically optimal whenm2 < 2m1.

Ifm2 > 2m1, from the results (B16)–(B18), when E∞[Tmax
k ] = γ , we obtain

lim
γ→∞

[
J(Tmax

k ) − LB(γ )
] = 2p1

m2
1
ln

m2
2

m2
1
.

Thus, Tmax
k is not third order asymptotically optimal whenm2 > 2m1.

B.2. Amixture of likelihood ratios stopping time

For ymix
t , it is easy to see that

min{y(1)
t , y(2)

t } ≤ log ymix
t ≤ max{y(1)

t , y(2)
t } (B19)

where y(i) is defined in (47).
In order to analyze the behaviour of Tmix

d , we use the similar arguments to those used in the case
of the generalized likelihood ratio stopping time. In particular, as d → ∞, we obtain

E∞[Tc
2] + od(1) ≤ E∞[Tmix

d ] ≤ E∞[Tc
1] + od(1).

where Tc
1 and Tc

2 are the CUSUM stopping times corresponding to y(1) and y(2) respectively and
with the same threshold d. Thus, if we let E∞[Tmix

d ] = γ , it is easy to see that, as γ → ∞,

log γ + log
m2

1
2

+ oγ (1) ≤ d ≤ log γ + log
m2

2
2

+ oγ (1).

If m2 < 2m1, under Pm1
0 and Pm2

0 , from (B19) and the behaviour of the generalized likelihood
ratio stopping time Tmax

d , we know that

Emi
0 [Tmix

d ] ≥ Emi
0 [Tmax

d ] = Emi
0 [Tc

2] + oγ (1).

So its performance is asymptotically worse than that of a CUSUM stopping time with parameter
m2, and thus, Tmix

d is not second-order asymptotically optimal.
Ifm2 > 2m1, since

log ymix
t ≥ log pi + y(i)

t ,

we obtain
Emi
0 [Tmix

d ] ≤ Emi
0 [T ′

i ],
where T ′

i is the CUSUM stopping time with threshold d − log pi and parametermi . Thus,

lim
γ→∞

[
J(Tmix

d ) − LB(γ )
] ≤ 2p1

m2
1
ln

m2
2

m2
1

− 2p1
m2

1
log p1 − 2p2

m2
2
log p2. (B20)

And so Tmix
d gives second-order asymptotic optimality in this case. But the detection delay

function J(Tmix
d ) is no longer a linear function of pi while LB(γ ) is still linear in pi . Thus, the
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difference J(Tmix
d ) − LB(γ ) can not cancel the constant term that depends on pi , and so it can not

be zero for any value of pi . In other words, Tmix
d does not have the third order asymptotic optimality

in general.


