1. Prove that the fundamental group of a product of two topological spaces is the product of their fundamental groups.

2. Prove that a retract of a Hausdorff space is closed.

3. Let T be a torus (i.e. $T = S^1 \times S^1$), and let x_0 be a point in T. Show that $T - \{x_0\}$ has a 'figure eight' as a deformation retract.

4. Let X be a simply connected topological space, and let x and y be two distinct points in X. Show that there is a unique path class in X with initial point x_0 and terminal point y_0.

5. Prove that the subspace $S^1 \times \{x_0\}$ is a retract of $S^1 \times S^1$ but is not a deformation retract, for any point $x_0 \in T$.

6. Let G be a topological group, with identity element e. (A topological group is a topological space G that also happens to be a group, such that the multiplication map $G \times G \to G$ is continuous, and the map $G \to G$ which sends g to g^{-1} is continuous.) Prove that $\pi_1(G,e)$ is an abelian group.