MATH 260 HW 2

Hand In

(1) Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

(2) Let W_1 and W_2 be subspaces of a vector space V.
 a) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2.

 (Note: You must prove first that $W_1 + W_2$ is a subspace of V and then prove that it contains W_1 and W_2.)

 b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.

 Note: If S_1 and S_2 are nonempty subsets of a vector space V, then the sum of S_1 and S_2, denoted $S_1 + S_2$, is the set \{ $x + y : x \in S_1$ and $y \in S_2$ \}.

(3) Suppose $b \in \mathbb{R}$. Prove that the set of all continuous real-valued functions on $[0,1]$ such that $\int_0^1 f = b$ is a subspace of $\mathcal{F}([0,1], \mathbb{R})$ if and only if $b = 0$.

(4) Let V be a vector space over F and let $u, v \in V$ be distinct. Prove that $\{u, v\}$ is linearly dependent if and only if one is a multiple of the other.

(5) Suppose $\{v_1, \ldots, v_n\}$ is linearly independent in a vector space V and $w \in V$. Prove that if $\{v_1 + w, \ldots, v_n + w\}$ is linearly dependent, then $w \in \text{span}(\{v_1, \ldots, v_n\})$.

DNHI

Friedberg p. 20 #8,
p. 33 #5, #13