(1) The set of solutions to the system of linear equations
\[\begin{align*}
 x_1 - 2x_2 + x_3 &= 0 \\
 2x_1 - 3x_2 + x_3 &= 0
\end{align*} \]
is a subspace of \(\mathbb{R}^3 \). Find a basis for this subspace.

(2) Prove that \{0\}, \(\mathbb{R}^2 \) and all lines in \(\mathbb{R}^2 \) through the origin are the only subspaces of \(\mathbb{R}^2 \). (Hint: Use a dimension argument.)

(3) Let \(V \) be a vector space, and let \(T \in \mathcal{L}(V) \). A subspace \(W \subseteq V \) is \(T \)-invariant if \(Tx \in W \) \(\forall x \in W \), that is, \(T(W) \subseteq W \). Prove that the subspaces \{0\}, \(V \), \(\text{ran}(T) \) and \(\text{ker}(T) \) are all \(T \)-invariant.

(4) Prove that there does not exist a linear map \(T \) from \(\mathbb{R}^5 \) to \(\mathbb{R}^2 \) such that
\[\text{ker}(T) = \{ (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5 \} \]
Hint: Use the Rank-Nullity Theorem.

(5) Suppose \(T \in \mathcal{L}(V, W) \) is injective and \(\{v_1, \ldots, v_n\} \) is linearly independent in \(V \). Prove that \(\{Tv_1, \ldots, Tv_n\} \) is linearly independent in \(W \).

(6) Extra Credit: A function \(T : V \to W \) between vector spaces \(V \) and \(W \) is called additive if \(T(x + y) = Tx + Ty \) for all \(x, y \in V \). Prove that if \(V \) and \(W \) are defined over \(\mathbb{Q} \), then any additive function from \(V \) to \(W \) is a linear map.

DNHI

Friedberg p. 55 #3, #11, #12
 p. 74-75 #3, #5, #9
 p. 84, 86 #2, #13

Prove that every linear map from a 1-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if \(\dim V = 1 \) and \(T \in \mathcal{L}(V) \), then there exists \(\lambda \in F \) such that \(Tv = \lambda v \) for all \(v \in V \).

Consider \(\mathbb{C} \) as a complex vector space. Is complex conjugation a linear operator on \(\mathbb{C} \), i.e. if \(\forall a + bi \in \mathbb{C}, T(a + bi) = a - bi \), does \(T \in \mathcal{L}(\mathbb{C}) \)?