1. Let V be a vector space, and let $T \in \mathcal{L}(V)$. Prove that $T^2 = T_0$ if and only if $\text{ran}(T) \subseteq \text{ker}(T)$.

Proof. We first show that if $T^2 = T_0$, then $\text{ran}(T) \subseteq \text{ker}(T)$. Let $v \in V$ and suppose $T^2 = T_0$. Then, $T^2v = T_0v = 0$. Thus, $Tv \in \text{ker}(T)$. Since $Tv \in \text{ran}(T)$ by definition, $\text{ran}(T) \subseteq \text{ker}(T)$.

We now show the converse. Let $v \in V$ and suppose $\text{ran}(T) \subseteq \text{ker}(T)$. Then, $Tv \in \text{ran}(T) \implies Tv \in \text{ker}(T)$. Then, $T(Tv) = 0 \implies T^2v = 0$. Thus, $T^2v = T_0v = 0 \ \forall v \in V$. □

2. Suppose V and W are both finite-dimensional vector spaces. Prove that there exists a surjective linear map from V to W if and only if $\dim W \leq \dim V$.

Proof. We first show that if there exists a surjective linear map from V to W, then $\dim W \leq \dim V$. Let $T \in \mathcal{L}(V,W)$ be surjective. Then, $\text{rank } T = \dim W$. By the Rank-Nullity Theorem,

$$\dim V = \text{nullity } T + \text{rank } T \geq \text{rank } T \geq \dim W.$$

We now show the converse. Suppose $\dim W \leq \dim V$. Let $\beta = \{\beta_1, \ldots, \beta_n\}$ be a basis for V and $\gamma = \{\gamma_1, \ldots, \gamma_m\}$ be a basis for W, with $m \leq n$. Since we have at least as many β’s as γ’s, each γ_i can be associated with at least one β_j by a function T from V to W. Then, T must be linear since T is determined by its action on the basis vectors of V. T is also surjective since every basis vector of the codomain W has a preimage in V. □

3. Let V and W be finite dimensional vector spaces and $T : V \rightarrow W$ be an isomorphism. Let V_0 be a subspace of V.

a). Prove that $T(V_0)$ is a subspace of W.

Proof. Let V and W be finite dimensional vector spaces, and let $T : V \rightarrow W$ be an isomorphism. Let V_0 be a subspace of V. We wish to show that $T(V_0)$ is a subspace of W. To show that a subset is a subspace, we need to show it satisfies the three conditions: i) it contains the zero vector of W, 0_W; ii) it’s closed under addition; and iii) it’s closed under scalar multiplication.

(1) Since V_0 is a subspace of V, it contains 0_V. Since T is linear, $T(0_V) = 0_W \in T(V_0)$.

1
(2) Let \(x, y \in T(V_0) \). Then, there exist vectors \(u, v \in V_0 \) such that \(Tu = x \) and \(Tv = y \). Then, \(x + y = Tu + Tv = T(u + v) \in T(V_0) \) since \(u + v \in V_0 \).

(3) Let \(c \in F \) and \(x \in T(V_0) \). Then, there exists a vector \(u \in V_0 \) such that \(Tu = x \). Thus, \(cx = cTu = T(cu) \in T(V_0) \) since \(cu \in V_0 \).

Thus, \(T(V_0) \) is a subspace of \(W \). \(\square \)

b). Prove that \(\dim(V_0) = \dim(T(V_0)) \).

Proof. Let \(\beta = \{v_1, \ldots, v_k\} \) be a basis for \(V_0 \). Then, \(\beta \) is linearly independent in \(V \). Since \(T \) is an isomorphism, it’s injective. In HW # 3, problem 5, we proved that the images of linearly independent vectors under an injective linear map must also be linearly independent. Thus, \(\gamma = \{Tv_1, \ldots, Tv_k\} \) is linearly independent in \(W \). Clearly, \(Tv_i \in T(V_0) \) since \(v_i \in V_0 \). So, \(\gamma \subset T(V_0) \). We wish to show that \(\gamma \) is a basis for \(T(V_0) \). Since we’ve just shown that it is linearly independent, we only need to show that \(\gamma \) is also a spanning set for \(T(V_0) \).

Let \(w \in T(V_0) \). Then, there exists \(v \in V_0 \) such that \(Tv = w \). Since \(\beta \) is a basis for \(V_0 \), there exist scalars \(a_1, \ldots, a_k \) such that

\[
v = a_1v_1 + \cdots + a_kv_k.
\]

Then,

\[
w = Tv = T(a_1v_1 + \cdots + a_kv_k) = a_1Tv_1 + \cdots + a_kTv_k
\]

Thus, an arbitrary vector \(w \) in \(T(V_0) \) can be written as a linear combination of the vectors in \(\gamma \). So, \(\gamma \) is a spanning set for \(T(V_0) \). Thus, \(\gamma \) is a basis for \(T(V_0) \), and \(\dim(T(V_0)) = k = \dim(V_0) \). \(\square \)

4. Prove that \(\mathbb{C} \cong \mathbb{R}^2 \) as real vector spaces and use this to show that \(\dim(\mathbb{C}) = 2 \).

Proof. We wish to prove first that \(\mathbb{C} \cong \mathbb{R}^2 \) as vector spaces over \(\mathbb{R} \). We will first define a map \(T : \mathbb{C} \to \mathbb{R}^2 \) and show that this map is linear and invertible. Let \(a + ib \in \mathbb{C} \). Then, define \(T(a + ib) = (a, b) \), with \(a, b \in \mathbb{R} \) and \(i = \sqrt{-1} \), i.e. map the real part of the complex number to the first coordinate in the ordered pair, and the imaginary part to the second coordinate. To show that \(T \) is linear, it must satisfy both additivity and homogeneity. Let \(a + ib, c + id \in \mathbb{C} \) and \(k \in \mathbb{R} \). Then,

\[
T(k(a + ib) + (c + id)) = T(ka + ikb + c + id)
\]

\[
= T((ka + c) + i(kb + d))
\]

\[
= (ka + c, kb + d)
\]

\[
= (ka, kb) + (c, d)
\]

\[
= k(a, b) + (c, d)
\]

\[
= kT(a + ib) + T(c + id)
\]
Thus, T is linear. We now show that T is both injective and surjective, which will show that T is an isomorphism.

To show injectivity, we show that $\ker(T)$ is trivial. Consider $T(a + ib) = (0, 0)$. Then, $(a, b) = (0, 0) \implies a = 0, b = 0$. Thus, only the zero vector of \mathbb{C} maps to the zero vector in \mathbb{R}^2. Thus, T is injective. To show surjectivity, we need to show that every ordered pair of real numbers can be written as a complex number. This is clearly possible: for any $(a, b) \in \mathbb{R}^2$, let $z = a + ib \in \mathbb{C}$. Thus, T is surjective, and is an isomorphism. Thus, $\mathbb{C} \cong \mathbb{R}^2$. Since isomorphic vector spaces have equal dimension, $\dim(\mathbb{C}) = \dim(\mathbb{R}^2) = 2$. \square