1. Find the change of coordinate matrix \(Q \) that changes \(\beta \)-coordinates into \(\gamma \)-coordinates: \(\beta = \{(2, 1), (-4, 1)\} \) and \(\gamma = \{(-4, 3), (2, -1)\} \).

Proof. The change of coordinates matrix that changes \(\beta \)-coordinates into \(\gamma \)-coordinates is \(Q = [\text{Id}]_\gamma^\beta \), where Id is the identity map from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \). So, to find \(Q \), just find the matrix representation of \(\text{Id} \) with respect to \(\beta \) and \(\gamma \). We first compute the images of each basis vector in \(\beta \) and look at their representations in \(\gamma \).

\[
\text{Id}(2, 1) = (2, 1) = a(-4, 3) + b(2, -1) = (-4a + 2b, 3a - b)
\]

\[
\text{Id}(-4, 1) = (-4, 1) = c(-4, 3) + d(2, -1) = (-4c + 2d, 3c - d)
\]

So, we must find the coefficients of the linear combination of vectors in \(\beta \) that represent the image of each basis vector in \(\beta' \). So, we get the following systems:

\[
\begin{align*}
2 &= -4a + 2b \\
1 &= 3a - b
\end{align*}
\]

Solving this system yields \(a = 2 \) and \(b = 5 \). The second system is

\[
\begin{align*}
-4 &= -4c + 2d \\
1 &= 3c - d
\end{align*}
\]

Solving this system yields \(c = -1 \) and \(d = -4 \). Each 2-tuple of coefficients represents a coordinate vector. To get the matrix, we simply place the coordinate vectors next to each other in the matrix:

\[
Q = [\text{Id}]_\gamma^\beta = \begin{pmatrix} 2 & -1 \\ 5 & -4 \end{pmatrix}
\]

\(\Box \)

2. Suppose \(\phi \in \mathcal{L}(V, F) \) and \(\phi \) is not the zero map. Prove that \(\dim V/\ker(\phi) = 1 \). Note: \(F \) is the ground field for \(V \).

Proof. Since \(\phi \) is not the zero map, \(\text{ran}(\phi) \) contains at least one non-zero element. So, its dimension must be at least 1. We note that \(\dim(F) = 1 \). Since \(\text{ran}(\phi) \) is a subspace of \(F \), \(\dim(\text{ran}(\phi)) \) cannot be more than 1. Thus, \(\dim(\text{ran}(\phi)) = 1 \).

By the First Isomorphism Theorem for Vector Spaces,

\[
V/\ker(\phi) \cong \text{ran}(\phi).
\]

Thus, \(\dim(V/\ker(\phi)) = \dim(\text{ran}(\phi)) = 1 \). \(\Box \)
3. **Extra credit:** Suppose $T \in L(V,W)$ and U is a subspace of V. Let π be the quotient map from V onto V/U. Prove that there exists $S \in L(V/U,W)$ such that $T = S \circ \pi$ if and only if $U \subset \ker(T)$.

Hint: For the backwards direction, define the map S explicitly and show that this map must be linear and satisfy the given relationship.

Proof. We first prove that if there exists $S \in L(V/U,W)$ such that $T = S \circ \pi$, then $U \subset \ker(T)$.

Suppose there exists $S \in L(V/U,W)$ such that $T = S \circ \pi$. Let $u \in U$. We will show that $u \in \ker(T)$. Since $u \in U$, $u \in V$ and $\pi(u) = [u] = [0_V] \in V/U$. Since S is linear, $S([u]) = S([0_V]) = 0_W$. Then, $0_W = S([u]) = S(\pi(u)) = Tu$. Thus, $u \in \ker(T)$.

Now we prove the reverse direction. Suppose $U \subset \ker(T)$. We will explicitly construct a map S from V/U to W that satisfies the necessary condition. Define $S : V/U \to W$ as $S([v]) = Tv$, where $[v]$ is an arbitrary affine subspace in V/U. We first show that S is linear; that is, S satisfies additivity and homogeneity.

Let $[v_1], [v_2] \in V/U$ and $c \in F$. Then,

\[
S(c[v_1] + [v_2]) = S([cv_1] + [v_2]) \\
= S([cv_1 + v_2]) \\
= T(cv_1 + v_2) \\
= cTv_1 + Tv_2 \\
= cS([v_1]) + S([v_2])
\]

Now, we check whether $T = S \circ \pi$ is true for all vectors $v \in V$. Let v_1 and v_2 be two distinct vectors in V and suppose $[v_1] = [v_2]$. Then, $S(\pi(v_1)) = S([v_1]) = Tv_1$ and $S(\pi(v_2)) = S([v_2]) = Tv_2$. Since $[v_1] = [v_2]$, we need to check whether $Tv_1 = Tv_2$ since we don’t know whether T is injective. Since $[v_1] = [v_2]$, $v_1 - v_2 \in U \implies v_1 - v_2 \in \ker(T)$. Thus, $T(v_1 - v_2) = 0_W \implies Tv_1 = Tv_2$. \(\square\)