Topology II Notes
Spring 2000

Robert Thompson

Author address:
CUNY Graduate Center
Contents

Chapter 1. Elementary Homotopy Theory 5
 1. Definition and Basic Properties of Homotopy Groups 5
 2. Cofibrations 5
 3. Fibrations 7
 4. Hurewicz Theorems and Whitehead Theorems 7
 5. Eilenberg-Mac Lane Spaces and Representability of Classical Cohomology 8

Chapter 2. Spectral Sequences 9
 1. General Construction 9
 2. Example – Serre Spectral Sequence of a Fibration 9
 3. Application – Cohomology of E-M Spaces and Cohomology Operations 9
 4. The Steenrod Algebra 9

Chapter 3. Stable Homotopy Theory and Spectra 11
 1. Stable Homotopy Groups 11
 2. The Category of Spectra 11
 3. Generalized Homology and Cohomology Theories 11

Chapter 4. The (Stable) Adams Spectral Sequence 13
 1. Construction and Properties 13
 2. Applications 13
1. Definition and Basic Properties of Homotopy Groups

Let $e_0 = \{1,0,\ldots,0\} \in S^n$. $[X,Y]$ denotes homotopy equivalence classes of maps (similarly for pairs, triples, etc.).

Definition 1.1. For a pointed space (X,x_0), define the nth homotopy group to be

$$\pi_n(X,x_0) = [(S^n,e_0),(X,x_0)].$$

Definition 1.2. For a pointed pair of spaces (X,A,x_0) define the nth relative homotopy group to be

$$\pi_n(X,A,x_0) = [(D^n,S^{n-1},e_0),(X,A,x_0)].$$

Proposition 1.3. For a pointed pair (X,A,x_0) there is a long exact sequence

$$\cdots \to \pi_{n+1}(X,A,x_0) \to \pi_n(A,x_0) \to \pi_n(X,x_0) \to \pi_n(X,A,x_0) \to \cdots$$

Proposition 1.4. Let (X,A,x_0) be a pointed pair. Given a strictly commutative diagram

$$\begin{array}{ccc}
A & \longrightarrow & X \\
\downarrow f|_{S^{r-1}} & & \downarrow f \\
S^{r-1} & \longrightarrow & D^r
\end{array}$$

the map $f : (D^r,S^{r-1},e_0) \to (X,A,x_0)$ represents the identity element in $\pi_r(X,A,x_0)$ if and only if f is homotopic rel S^{r-1} to a map $f' : D^r \to A$.

2. Cofibrations

Proposition 1.5. Let (Y,B) be a pointed pair such that the inclusion $i : B \hookrightarrow Y$ is an n-equivalence. Suppose there is a diagram

$$\begin{array}{ccc}
B & \longrightarrow & Y \\
\downarrow g & & \downarrow f \\
S^{r-1} & \longrightarrow & D^r
\end{array}$$
with \(r \leq n \) which commutes up to homotopy. Let \(H : S^{r-1} \times I \to Y \) be a homotopy between \(f|_{S^{r-1}} \) and \(i \circ g \). There exists a map \(f' : D^r \to B \) such that \(f'|_{S^{r-1}} = g \) and \(H \) extends to a homotopy between \(f \) and \(i \circ f' \).

Proof. We glue the map \(f \) together with the homotopy \(H \) to get a strictly commuting square. Specifically, define \(\bar{f} : D^r \to Y \) as follows:

\[
\bar{f}(x) = \begin{cases}
 f(2x) & \text{if } 0 \leq |x| \leq 1/2 \\
 H \left(\frac{x}{|x|}, 2|x| - 1 \right) & \text{if } 1/2 \leq |x| \leq 1
\end{cases}
\]

Then the following square is strictly commuting:

\[
\begin{array}{ccc}
B & \xrightarrow{i} & Y \\
\downarrow{g} & & \downarrow{\bar{f}} \\
S^{r-1} & \xleftarrow{i} & D^r
\end{array}
\]

Apply Proposition 1.4 to this square to get a map \(f' : D^r \to B \) with \(\bar{f} \) homotopic to \(i \circ f' \). \(f \) is homotopic to \(\bar{f} \) by \(\bar{f}(x(t+1/2)) \), so we get \(f \) homotopic to \(i \circ f' \) by a homotopy which extends the homotopy \(H \).

Theorem 1.6. Let \((X, A) \) be a CW pair, and let \((Y, B) \) be a pair such that the inclusion \(i : B \to Y \) is a weak homotopy equivalence. Suppose we have a strictly commutative diagram

\[
\begin{array}{ccc}
B & \xrightarrow{i} & Y \\
\downarrow{f|_A} & & \downarrow{f} \\
A & \xleftarrow{i} & X
\end{array}
\]

Then \(f \) is homotopic rel \(A \) to \(i \circ f' \) for some map \(f' : X \to B \).

Proof. We will use Zorn’s Lemma. Consider the collection \(\mathcal{L} \) of CW complexes between \(A \) and \(X \) for which the conclusion of the Proposition holds. In other words, let \(\mathcal{L} \) be the collection of triples \((U, g', G) \) where \(U \) is a CW complex with \(A \subset U \subset X \), \(g' : U \to B \) with \(g'|_A = f|_A \), and \(G : U \times I \to Y \) is a homotopy rel \(A \) between \(f|_U \) and \(i \circ g' \). \(\mathcal{L} \) is not empty since \((A, f|_A, G) \in \mathcal{L}\), where \(G \) is the constant homotopy. \(\mathcal{L} \) is partially ordered by inclusion and all chains have upper bounds (just take the union), hence a maximal element \((U, g', G) \in \mathcal{L} \) exists. We need to see why \(U = X \).

If not then let \(e \) be an \(r \)-cell in \(X \) not in \(U \). Assume \(r \) is minimal among such cells, so that \(U \cup e \) is obtained by attaching \(D^r \) to \(U \) with
characteristic map \(\Phi : (D^r, S^{r-1}) \to (U \cup e, U) \). Apply Proposition 1.5 to
\[
\begin{array}{c}
B \\
\downarrow ^{i}
\end{array}
\begin{array}{c}
Y
\end{array}
\begin{array}{c}
f \circ \Phi
\end{array}
\begin{array}{c}
\downarrow \\
\uparrow ^{g' \circ \Phi |_{S^{r-1}}}
\end{array}
\begin{array}{c}
S^{r-1}
\end{array}
\begin{array}{c}
\rightarrow
\end{array}
\begin{array}{c}
D^r
\end{array}
\]
to obtain a map \(D^r \to B \) and a homotopy \(H : D^r \times I \to Y \) between \(f \circ \Phi \) and \(g' \circ \Phi |_{S^{r-1}} \). This homotopy, together with the given homotopy on \(U \), defines a homotopy on \(U \cup e \) making \(U \cup e \) an element of \(\mathcal{L} \) which contradicts the maximality of \(U \). Therefore we must have \(U = X \).

3. Fibrations

4. Hurewicz Theorems and Whitehead Theorems

Theorem 1.7. Let \(f : X \to Y \) be weak homotopy equivalence. Then for any CW complex \(K \), \([K,X] \xrightarrow{f_*} [K,Y] \) is a bijection.

Proof. By appealing to the mapping cylinder of \(f \), we can assume, without loss of generality, that the map \(f \) is injective.

- **surjective:** Let \([a] \in [K,Y]\). Apply Theorem 1.6 to get a map \(a' : K \to X \) such that \(f \circ a' \) is homotopic rel \(\{k_0\} \) to \(a \), i.e. \(f_*([a']) = [a] \).
- **injective:** Let \([a_0],[a_1] \in [K,X]\) such that \(f_*([a_0]) = f_*([a_1]) \).
 Then there is a homotopy \(H : K \times I \to Y \) such that \(H_i = a_i \), \(i = 0,1 \). Define \(h : K \times \{0\} \cup K \times \{1\} \cup \{k_0\} \times I \to X \) by
 \[
 h(k,t) = \begin{cases}
 a_0(k) & \text{if } t = 0 \\
 a_1(k) & \text{if } t = 1 \\
 x_0 & \text{if } k = k_0
 \end{cases}
 \]
 Now apply Theorem 1.6 to
 \[
 \begin{array}{c}
 X \\
 h
 \end{array}
 \begin{array}{c}
 \downarrow ^{f}
 \end{array}
 \begin{array}{c}
 Y
 \end{array}
 \begin{array}{c}
 \downarrow ^{H}
 \end{array}
 \begin{array}{c}
 K \times \{0\} \cup K \times \{1\} \cup \{k_0\} \times I \\
 \end{array}
 \begin{array}{c}
 \rightarrow
 \end{array}
 \begin{array}{c}
 K \times I
 \end{array}
 \]

Corollary 1.8 (Whitehead Theorem). Let \(f : X \to Y \) be weak homotopy equivalence between CW complexes. Then \(f \) is a homotopy equivalence.
Proof. Apply Theorem 1.7 to the case $K = Y$ to produce a map $g : Y \to X$ such that $f_*(\langle g \rangle) = \langle 1_Y \rangle$. So $f \circ g \sim 1_Y$. Now let $K = X$ and notice $f_*([g \circ f]) = [f \circ g \circ f] = [f] = f_*(1_X)$. Since f_* is 1-1, we have $g \circ f \sim 1_X$. So g and f are inverse homotopy equivalences. \qed

5. Eilenberg-Mac Lane Spaces and Representability of Classical Cohomology
CHAPTER 2

Spectral Sequences

1. General Construction

2. Example – Serre Spectral Sequence of a Fibration
 2.1. Construction.
 2.2. Convergence.
 2.3. E_2-term.

3. Application – Cohomology of E-M Spaces and Cohomology Operations

4. The Steenrod Algebra
2. SPECTRAL SEQUENCES
CHAPTER 3

Stable Homotopy Theory and Spectra

1. Stable Homotopy Groups
2. The Category of Spectra
3. Generalized Homology and Cohomology Theories
3. STABLE HOMOTOPY THEORY AND SPECTRA
CHAPTER 4

The (Stable) Adams Spectral Sequence

1. Construction and Properties

1.1. A Digression – Homological Algebra.

1.2. The E_2-term.

1.3. Completions and Localizations.

1.4. Convergence.

2. Applications

2.1. Hopf Invariant One and Vector Fields on Spheres.

2.2. Cobordism Rings.

2.3. Other Applications.