.**THE MOST IMPORTANT
PUBLICATIONS**

O. Kharlampovich, A. Myasnikov, Model theory and algebraic geometry in groups, non-standard actions and algorithmic problems, Proceedings of the Intern. Congress of Mathematicians 2014, Seoul, v. 2, invited lectures, 223-244.

O. Kharlampovich, B. Khoussainov, and A. Myasnikov, From automatic structures to automatic groups, Groups, Geometry, Dynamics, 8 (2014), no. 1, 157-198.

B. Fine, O. Kharlampovich, A. Myasnikov, V. Remeslennikov, G. Rosenberger, Tame automorphisms of elementary free groups. Comm. Algebra 42 (2014), no. 8, 3386Ð3394.

O. Kharlampovich, A. Myasnikov, D. Serbin, Infinite words and universal free actions, Groups Complexity Cryptology, 2014, Issue 1.

O. Kharlampovich, J. Macdonald, Effective embedding of residually hyperbolic groups into direct products of extensions of centralizers, Journal of Group Theory, J. Group Theory 16 (2013), 619Ð650.

I. Bumagin, O. Kharlampovich, Zn-free groups are CAT(0) J. London Math. Soc. 88(3): 761-778 (2013).

O.
Kharlampovich, A. Myasnikov,
Limits of relatively
hyperbolic groups and Lyndon's completions, Journal of the
European Math. Soc.,Volume 14, Issue 3, 2012, pp. 659-680.

O.
Kharlampovich, E. Ventura, A Whitehead algorithm for Toral Relatively
Hyperbolic Groups, International Journal of Algebra and Computation
Vol. 22, No. 08 (2012)

O. Kharlampovich,
A. Vdovina,
Linear estimates for solutions
of quadratic equations in free groups, IJAC, Volume: 22, No.
1(2012).

O. Kharlampovich, A. Mohajeri,
Approximation of Geodesics in Metabelian Groups,
Volume:
22, Issue: 2(2012).

O. Kharlampovich,
A. Myasnikov, V. Remeslennikov, D. Serbin,
Groups with free regular
length functions in ${\bf Z}^n$,
Transactions of the AMS, 364 (2012), no. 6, 2847-2882.

O. Kharlampovich,
B. Khoussainov, and A. Miasnikov,
From
automatic structures to automatic groups, 35
pages, accepted to Groups, geometry,dynamics.

I. Bumagin,
O. Kharlampovich, ${\bf Z}^n$-free
groups are CAT(0), 2011, Arxiv, 19 pages,
submitted

O. Kharlampovich,
I. Lysenok, A. Myasnikov,
N.
Touikan, Quadratic equations over free
groups are
NP-complete, TOCS (Teor.
Comp. Syst.), 10, 2008.

O. Kharlampovich, A. Myasnikov,
V.
Remeslennikov, D. Serbin,
Exponential
extensions
of groups. J. Group Theory 11 (2008), no. 1,119--140.

I.
Bumagin,O. Kharlampovich, A. Miasnikov,
Isomorphism problem for fully residually free
groups
, J. Pure and Applied Algebra, Volume 208, Issue
3, March 2007, Pages 961-977.

O.
Kharlampovich, A. Miasnikov, Elementary theory of free nonabelian groups (paper 5 on the theory of
a free
group) , J.Algebra,
302,
Issue
2, 451-552, 2006. 2002
version, first 1999
version.

O.
Kharlampovich, A. Miasnikov,
Effective JSJ decompositions
(paper 4 on the theory of a free group), Contemp.Math. AMS, Algorithms,Languages, Logic (Borovik,
ed.),
CONM/
378, 2005, 87-212 (Math GR/0407089).

O.
Kharlampovich, A. Miasnikov,
Implicit function theorem over free groups and
genus
problem Proceedings of the Birmanfest,
AMS/IP
Studies
in Advanced Mathematics, v. 24, 2001, 77--83.

O.
Kharlampovich, A. Myasnikov,
Algebraic geometry for free groups: lifting
solutions
into generic points, Contemp.Math.
AMS,
Algorithms,
Languages, Logic (Borovik,
ed.),
CONM/ 378, 2005, 213-318 (Math
GR/0407110).

O.
Kharlampovich, A. Myasnikov,
V.
Remeslennikov, D. Serbin, Subgroups of fully residually free groups:
algorithmic
problems, Contemp. Math. series of the
AMS, Group
theory, Statistics and Cryptography, 360 (2004).

O.
Kharlampovich, Equations
over
fully
residually free groups .
Sections
"Auxiliary results", "Projective images", Theorem 2 from
the 1999 version of this paper were
moved into paper 5 ("Elementary theory..."), all the other
results appeared in the paper "Effective JSJ decompositions".

O.
Kharlampovich, A. Myasnikov, Implicit function theorem over
free
groups , (paper 3 on the theory of a free
group, Math. GR/0312509), Journal
of Algebra, vol 290/1, pp. 1--203, 2005. 2000 version. The
last section
from the 1999 version of this paper was
moved into
paper 5 ("Elementary theory...").

O.
Kharlampovich, E. Lioutikova
and A. Myasnikov,
Equations in the **Q**-completion of a torsion-free hyperbolic
group, Transactions
of the A.M.S., V. 351, No. 4, 1999, 20 pages.

O. Kharlampovich and A. Myasnikov,Tarski's problem about the elementary theory of free groups has a positive solution

, PDFERA-AMS, V.4, 1998, 101--108.O.
Kharlampovich and A. Myasnikov,
Equations
in
a
free **Q**-group, Transactions of the A.M.S., V. 350, No. 3,
March
1998, 947--974.

O.
Kharlampovich and A. Myasnikov,
Hyperbolic
groups
and
free constructions, Transactions of the A.M.S., V. 350, No. 2,
Feb. 1998, 571--613.

O.
Kharlampovich, A. Myasnikov , Irreducible
affine
varieties
over a free group. I: Irreducibility of quadratic equations
and Nullstellensatz (paper 1 on the
theory of a free group), J. Algebra, V.
200, 472--516 (1998).

O.
Kharlampovich, A. Myasnikov , Irreducible
affine varieties over a free group. II: Systems in row-echelon form and
description
of residually free groups (paper 2 on the
theory of a
free group), J. Algebra, V. 200, 517--570 (1998).

O.
Kharlampovich, A. Myasnikov,
V.
Remeslennikov, Logical languages and axioms
for
groups with a length function, Russian academy of sciences, Siberian
division,
Preprint 20, Omsk 1995.

O.
Kharlampovich and M. Sapir, Algorithmic
problems in
varieties, a survey, International Journal of Algebra and Computation,
(1995),
# 12, 379--602.

D.
Gildenhuys, O. Kharlampovich,
A.
Myasnikov, CSA groups and separated free
constructions, Bull. Austral. Math.
Soc., Vol. 52 (1995), 63--84.

O.
Kharlampovich, The word problem for the
Burnside
groups, Journal of Algebra, 173, (1995), 613--621.

D.
Gildenhuys, S. Ivanov
and
O. Kharlampovich, On
a
series of 1-relator pro-p-groups, (13 pages), Proceedings of The Royal
Society
of Edinburgh, Vol. 124A, (1994), 1199--1207.

O.
Kharlampovich and D. Gildenhuys,
The
word
problem for some varieties of solvable Lie algebras, International
Journal of Algebra and Computation, Vol.4, No.3(1994), 481--491.

O.
Kharlampovich and D. Gildenhuys,
Varieties
of
Lie algebras with solvable word problem, Communications in
Algebra, Vol.21, No.10 (1993), 3571--3609.

O.
Kharlampovich and D. Gildenhuys,
Identities
in
the variety of center-by-N_{2}A Lie algebras,
International Journal of Algebra and Computation, v.1, #4 (1991),
493--521.

O.
Kharlampovich, The word problem for
solvable Lie
algebras; a boundary between solvability and unsolvability,
Contemporary
Mathematics,
v.131, (Part 2)(1992),
53--57.

O.
Kharlampovich, The word problem for
solvable groups
and Lie algebras, MSRI Publications by Springer-Verlag
23, (Algorithms and Classification in Combinatorial Group Theory, MSRI,
Berkeley, CA) (1991), 61--69.

O.
Kharlampovich, The word problem for
solvable groups
and Lie algebras, Math. USSR Sbornik
67, 2 (1990), 489--525.

O.
Kharlampovich, Finitely presented solvable groups and Lie
algebras with
unsolvable word problem, Mat. Notes 46, 3-4
(1990), 731--738.

O.
Kharlampovich and M. Sapir, The word
problem in
varieties of Lie and associative algebras, Soviet Math. Iz.
Vuz. 6
(1989), 76--84.

O.
Kharlampovich, Minimal varieties of groups
and Lie
algebras with unsolvable word problem, in ``Siberian School on
Varieties of
Algebraic Systems'', Barnaul (1988), 72--75.

O.
Kharlampovich, Equality problem in the
variety
$ZN_2A$, Iz. Vuz. Mat. No.11 (1988), 21--33.

O.
Kharlampovich, The word problem for
subvarieties of
the variety N2A, Algebra i Logika
26, 4 (1987), 258--285.

O.
Kharlampovich, I. Mel'nichuk
and M. Sapir, The word problem in the varieties of semigroups,
rings
and
Lie algebras, Sib. Math. J. 27, 6 (1986), 144--156.

O.
Kharlampovich, Lyndon's condition for
solvable Lie
algebras, Soviet Math. Iz. Vuz. 9 (1984), 50--59.

O.
Kharlampovich, The undecidability
of the universal theory of some classes of Lie rings, in "Dep. VINITI,
#5469-83", Sverdlovsk (1983), 2--17.

O.
Kharlampovich, The universal theory of the
class of
finite nilpotent groups is unsolvable, Mat.
Zametki 33, 4
(1983), 499--516.

O.
Kharlampovich, A finitely presented
solvable group
with unsolvable word problem, Izvest. Ak. Nauk,
Ser. Mat. (Soviet Math., Izvestia)
45,
4
(1981), 852--873.

**IN PREPARATION:**

- O. Kharlampovich and A. Myasnikov,
Implicit
function theorem for free groups.
- O. Kharlampovich and A. Myasnikov,
Equations
over fully residually free groups.

**SUBMITTED FOR PUBLICATION:**

- O. Kharlampovich and A. Myasnikov,
Implicit
function theorem over free groups and genus problem.